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Final Report on Delivery Order 48 of NAS8-36955

This contract supported four activities.

1 . Differential Collision Cross-Sections

The primary purpose of this effort was to provide on-going support for Dr.
Charles Keffer to establish a facility at MSFC for the measurement of differential
collision cross-sections of O on N 2 and other gases of relevance to understanding
vehicle-environmental contamination effects in orbit.

This work was initiated in 1988 under NAG8-100, entitled "Space Vehicle
Contamination Study." During the period 6/1/89 to 11/6/90 the work was funded
under D.C. 48, D.C. 59 and NAS8-37586. In June 1990, Dr. Keffer was awarded a
grant with himself as Principal Investigator and has continued the work since that time
in his own capacity without further assistance from D. G. Torr.

To place the flow of funding in perspective, Table 1 shows the percentage of Dr.
Keffer's time charged to the above mentioned contracts in support of the fabrication of
the cross-section facility. Also to provide some traceability of progress, we review
briefly below the overall chronological evolution of the work, identifying what was
specifically accomplished under D.C. 48. Also Dr. Keffer provided weekly written
reports on his progress consistently and these are available on file.

The proposed experiments use a 5 eV atomic oxygen beam for differential
scattering cross-section measurements. This 5 eV O beam is formed by focussing the
output from a high energy pulsed CO2 laser into the throat of a molecular oxygen nozzle
beam source.

NAG8-100

Work on the cross-section facility was initiated under this grant in 1988. The
final report on progress made was submitted on November 7, 1989. Essentially the
conceptual design for the facility was developed, machining and welding were completed,
and documentation generated. Signal to noise ratio estimates were calculated and writing
of software for operation of the instrument initiated.

NAS8-37586

This contract supported Dr. Keffer from June 1 through September 30, 1989.
During this period the cross-section chamber was assembled, and initial problems with
the system debugged. By the end of the 4 month funding period the system was pumped
down, but it was discovered that the chamber went out of alignment under vacuum
conditions. Work on rectifying this problem was initiated under D.C. 48.

Work Accomplished Under D.C. 48

This phase started with an evaluation of the noise sources in the system, and in
correcting the serious alignment problems identified under NAS8-37586.

The correction approach that was adopted was to adjust the assemblies attached to
the bellow section. Following the alignment correction, the chamber was successfully
aligned under vacuum on one axis. Vent and evacuation cycles were performed for
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alignment reproducibility. The alignment of the CO2 beam was successful to the point of
hitting the beam valve aperture with the focussed laser beam. However, the coating for
the mirror which reflects the CO2 laser beam was destroyed because of the high energy
density of the beam.

Various materials were tested for CO2 laser mirrors, and nickel copper mirrors
with a gold coating were found to be successful.

Alignment tests were performed on the mass spectrometer housing, and work
commenced with thermal scattering measurements. The testing indicated that all critical
elements could be aligned. Estimates were made of the accuracy and uncertainty of the
alignment. This was the status of the project on January 31, 1990.

During February work continued under D.O. 59. Under D.O. 59 work began on
detecting a scattered signal from 02 on N2 collisions. However, the signal to noise was
poor. Shielding of signal lines corrected the problem.

Work on the system operating software was re-initiated.

Work was started in a pulse mode of operation with crossed beams.

An anomalous result was obtained for the O2-N 2 beams.

At this point funding was continued under D.O. 48.

The problem causing the anomalous results was identified and corrected and both
beams exhibited sharp temporal and spatial profiles.

To increase sensitivity further the filament emission of the mass spectrometer
was increased to give a factor of 10 improvement in detection efficiency. Also, the
detector aperture was increased.

An anomaly in the results obtained was discovered in early March. This was
eventually traced to a grounding problem in the instrument triggering circuit.

Action taken to improve S/N included:

Inhibition of the two pulsed valves controlling the sources of the crossed beams
when data is not being taken.

An RF shield for the mass spectrometer data cable was added.

This was the status of the project at the end of April 1990, after which the
project was funded under D.O. 59 until Dr. Keffer obtained independent funding to
continue the work.

, Groundbased Scientific Observations of Rocket Releases during
NICARE-1

This project utilized the broadband imaging spectrometer referred to as the
Compact Spectrometer developed in a colloborative effort with MSFC under NAG8-060.
Since the Compact Spectrometer was the only instrument in existence capable of
measuring a spectrum simultaneously across the wavelength range 3600 - 11,000 A,

2



UAH was approached by the Naval Research Labs (NRL) to monitor a rocket launched
chemical release experiment in which the emissions of two new chemicals were to be
identified. The spectra to be expected were essentially unknown. Thus the need for a
broadband spectral imager.

The measurements were made from a naval station at Duck, North Carolina on
October 22, 1989. The rocket was launched from Wallops Island, Virginia. Figures l a
show the twilight airglow spectrum recorded prior to launch. Figure 1 is the nightglow
spectrum recorded two minutes prior to launch, and Figure 2, the same one minute after
the flight. Figure 3 shows the spectral image recorded for 30 seconds immediately prior
to the first release, which was a nickel carbonyl release. The natural airglow
background has been removed. Figure 4 shows the spectral image recorded for 30
seconds commencing after the nickel carbonyl release. Figure 5 shows the same 60
seconds after the release. Emissions were only observed in the field of view of the mid-
visible channel indicating that a sharp edge must characterize the cloud. The emissions
appear to be a CO2 continuum. Figures 6 and 7 respectively show the corresponding
spatial distribution of the CO2 continuum. The narrow width of the emission suggests
that the rocket exhaust plume was being observed, and that no emissions from the
release were observed. No emission was detected from release 2 which was a
trifluromethyl bromide release. Figures 8 and 9 show a blow-up of the two CO2 spectra.

These data were provided to NRL and the results were presented by Dr. Paul
Bernhardt at the Fall 1990 Meeting of the American Geophysical Union. A copy of the
printed abstract is attached.

3. Data Compression Study for the UVI

The purpose of this study was to evaluate ways by which the data rate generated
by the detector readout could be matched to the telemetry transfer rate to the ground.
The main goal was to determine what constraints the science requirements placed on
temporal and spatial resolution, because the data rate can be reduced by increasing the
CCD on chip integration time and by reducing spatial resolution requirements. Also
placement (mapping) of the object dimensions in the image plane, i.e. a round earth on a
rectangular image plane provides some additional freedom.

The pixel dimensions of the CCD are 244 x 550 = 1.342 x 105 pixels per
readout, digitized to 12 bits yields a data rate of 1.5 x 10s bits per readout. If no spatial
compression could be tolerated, this would dictate an on-chip integration time of ~134
seconds to match the 12 kbps telemetry rate assigned to the UVl.

An evaluation of auroral dynamical time scales revealed two boundaries in this
temporal regime: less than 1 second and greater than several tens of seconds. A thirty
second integration time therefore requires a factor of 4.5 additional compression. The
desired spatial resolution should be better than 40 km.

A factor of 2 can be obtained by noting that the pixel size of the Thomson TH 7866
CCD is 27 x 16 microns, which yields an undesirable elongated rectangular spatial
resolution element. Thus it was decided to sum two of the 16 _m pixels to give a spatial
resolution element of 32 x 27 I_m as indicated in Figure 3.1. This image is fiber
optically mapped from the CCD to the focal plane of the image intensifier as illustrated in
Figure 3.2, yielding a focal plane spatial resolution element of 87.4 x 73.7 _m which
matches the optical blur spot size of the instrument. The ground spatial resolution

3
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PARAMETERS IN MAPPING OF PHOTOCATHODE TO CCD
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achieved at 9 Earth radii is 25 km which meets the science requirements. Thus an
additional factor of 2.2 compression is needed to match the telemetry rate.

This can be readily achieved with standard data compression techniques. For
example, the first pixel in each row can be digitized to 12 bits, and then the intensities
recorded with respect to the first expressed on a relative scale at lower quantization.
Eleven bit digitization, for example yields a compression of a factor of 2. As a check for
self-consistency the last pixel will also be digitized to 12 bits.

This study resolved the data compression issue. Figure 3.3 illustrates the
placement of the image on the image tube focal plane.

4. Science Priorities for Ultraviolet Imaging in the Mid-1990's

This task was approached mainly from the perspective of the ionospheric
priorities for global imaging, and not from the magnetospheric perspective because our
expertise lies in ionospheric physics. The magnetospheric input was provided by other
Co-investigators with expertise in magnetospheric physics.

The Earth's upper atmosphere is constantly undergoing periodic and aperiodic
changes induced by solar eletromagnetic and corpuscular radiation.

The primary energy source is the absorption of solar ultraviolet radiation which
under quiet conditions produces predictable cyclic patterns of behavior.

The solar wind introduces plasma into the terrestrial environment which
energizes and penetrates into the Earth's magnetosphere where it is stored and then
impulsively released creating, for example, the visual aurora.

These processes generate complex and variable electric potentials and currents
which, in turn, result in large insertions of electrical and corpuscular energy to the
upper atmosphere, greatly perturbing is quiet time behavior.

Figure 4.1 illustrates the energy sources to the ionosphere/thermosphere. Our
goal is to determine the energy sources and their impact on the system.

To understand the significance of the role of the UVl Imager for the ISTP mission,
one can pose the questions: what will the UVI do that has never been done before. The UVI
will provide global coherent images of terrestrial emissions every 30 seconds, i.e. a full
global snapshot of the entire earth repeated at 7 wavelengths. This has never been
achieved before, because previous images of the earth had to be built up one pixel at at
time by scanning a pencil beam field-of-view across the earth. It required 15 minutes
on the Dynamics Explorer to build up single image at one color. Thus the coherence
needed over time scales of the order of tens of seconds to understand the global behavior
of the dynamic aurora could not be realized.

Second, the filter technology did not exist prior to UVl to separate out the
ultraviolet wavelengths or colors emitted by the upper atmosphere, so that the full
information of the spectral nature of the emissions could not be realized. (Note the
dayside of the earth can only be viewed at VUV wavelengths). Thus the questions reduced
to: what will coherent spectrally pure global imaging achieve?

To answer this question we examined the status of ionospheric research.
Currently models exist which have the potential to describe the behavior of the global

4
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SCIENCE OBJECTIVES: THE COUPLED IONOSPHERE THERMOSPHERE
MESOSPHERE SYSTEM
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ionosphere. These ionospheric global models require the following fundamental input
parameters:

Solar EUV flux

Global precipitated particle flux

Upper atmospheric neutral winds

Global electric field pattern

Knowledge of the neutral atmosphere, i.e. composition and temperature

If the ionospheric models are combined with a thermospheric global circulation
model (TGCM) then the required inputs reduce to

Solar EUV flux

Global precipitated particle flux

Global electric field pattern

Under this contract we developed procedures to demonstrate that the UVI images can be
used to provide the global precipitated particle flux and the global electric field pattern.
These two parameters have been impossible to acquire on a global grid in the past,
because the data are only useful if near simultaneous measurements can be made on a
global scale.

Under D.O. 48 we demonstrated that coherent global imaging of spectrally pure
emissions will provide the data needed to determine the particle fluxes and electric
fields.

The first task to be performed was to determine what emissions could be used to
characterize the particle energy influx. Using the auroral deposition code developed
under NAS8-37586, the response of several candidate emissions to auroral particle
energy input was evaluated. It was demonstrated that the molecular nitrogen Lyman-
Birge-Hopfield bands in the Vacuum Ultraviolet (VUV) range 1200 - 1800 A (termed
LBHLoNG) vary linearly with the total precipitated particle energy flux. No other
emissions exhibit this behavior. The results of these calculations are shown in Figure
4.2. These results were presented to the UVl Science Team on August 15-16, 1990.
This success was fundamental to the science objectives that could be developed, and can
be attributed directly to the successful development of a rectangular VUV filter under
NAS8-37586 that straddled the LBHLoNG wavelength range. A full scientific under-
standing was developed as to why the LBHLoNG wavelengths respond in the desired way.

The next discovery proved to be equally significant, namely the ratio of two
emissions were found which were sensitive only to the energy spectrum of the incoming
particles, as defined by a "characteristic energy". Figure 4.3 shows the characteristic
energy as a function of the ratio of the LBHLoNG]LBHsHoRT emissions, where LBH short lie
in the wavelength range 1400-1600 A. Once again, the key to achieving this success is
the ability to fabricate a filter that can spectrally isolate the LBHLoNG and LBHsHoR T
emissions. The ratios of many emissions were investigated, and in each case with the

5



|i!o

I i I t I I

,[ I I I I ! I

w •,, o s. s _.w

(b'_) lillu1.1,'lS,U8 uwnlo'J

Q

U

_T

!

I

:3

i1



2.5
I I I I

2 _)

g
_ 1.5

_ ,

0.5 im I

0.0 I I I I
0.0 2 4 6 8 10

Energy (key)

Figure 4.3



exception of LBHLoNG/LBHsHORT. strong sensitivity to atmospheric composition and
temperature were observed, which impacted their usefulness.

The above findings mean that the spectrum and energy flux of the incoming
particles will be derived from the UVl images on a global scale, every 30 seconds. The
impact of this data on modeling will be profound for the following reasons. The auroral
code, referred to above, can now be used to calculate the global ionospheric corpuscular
source function as a function of time. This will be the first time that real values for this

critical ionospheric input parameter will be available. The corpuscular source accounts
for about half the total energy input to the ionosphere and thermosphere and in the
auroral zone it is the dominant energy source.

The results of this work were published in the Journal of Geophysical Research
under the title, "The Dependence of OI 1356 and N2 LBH Auroral Emissions on the
Neutral Atmosphere", which is attached as Appendix A.

Figure 4.1 illustrates the energy input sources to the thermosphere/ionosphere
system. An important goal in Solar Terrestrial Physics is to quantify the effects of
coupling of magnetospheric electrical energy into the ionosphere. Under this contract
we developed a strategy to use the imager to help define the global electric field system.

Current systems in the magnetosphere generated by interactions with the solar
wind generate a cross-tail potential which maps down into the ionosphere, where it
accelerates the ions. The ions collisionally impart momentum to the neutral atmosphere
which sets up winds which typically can reach velocities of the order of kilometers per
second. Thermally driven winds can also act on the ions generating ion drift motions.
The effects of electric field are therefore manifested in ion and neutral motion. The
former can be measured by groundbased incoherent scatter radars and the latter by
Fabry-Perot interferometers which monitor a bright airglow feature at 6300 A. Also,
the current systems associated with the electric fields cause fluctuations in the earth's
surface magnetic fields which can be observed by magnetometers. In addition, the
electric field instruments on the ISTP spacecraft make direct in situ measurements of
electric fields. All the above techniques can provide valuable spot (isolated)
measurements of the global electric field. However, the imaging data can also be used to
infer electric fields on a much broader scale. This statement is based on the fact that the
ionosphere constitutes an important component of the magnetospherlc electrical
circuits. Currents can flow into and out of the ionosphere if the input and output points
are electrically connected horizontally. The current carriers that close the loop are the
electron-ion pairs that constitute the ionospheric plasma. Thus when auroral electron
precipitation occurs, generating the auroral emissions, there is an associated production
of electron-ion pairs. This production rate can be computed by the auroral deposition
code from the UVI images as described above. Naturally, at night, data taken by the Iowa
Visible Imager can also be used. This source function coupled with an ionospheric global
model can be used to calculate the ionospheric electron density, i.e. the density of the
current carriers, which means that the electrical conductivity of the circuit can be
computed. These conductivities can then be used in an ionospheric electrodynamics
model to infer the input electric fields.

Currently large scale potential patterns describing ionospheric convection
patterns are estimated using statistical models for the ionospheric electrodynamics. One
such model referred to as the Kamide-Richmond model, utilizes the following input data
to infer the large scale potential pattern:

6



Incoherent scatter radar convection observations

Satellite direct field observations

Ground and satellite magnetometer observations

Ionosphere electrical conductance observations

The groundbased observations are capable of tracking rapid changes in electric
fields and currents, conductivities and associated magnetic perturbations. The
electrodynamics models can combine different kinds of electrodynamical data to infer the
high-latitude electric potential patterns as they evolve in time. However. spatial
coverage is limited so that many stations would be needed to obtain global coverage. By
using the global conductances derived from the UVl/VlS images the input database can be
greatly enhanced, and at much higher time resolution, allowing the time-evolution of the
global ionosphere to be modeled.

Figures 4.4 4.9 illustrate our strategy for reaching a quantitative global
modeling capability by the mid-1990's.

Figure 4.4. shows the basic starting point, discussed above. P. G. Richards and D.
G. Torr have developed a global ionospheric model referred to as the Field Line
Interhemispheric Plasma (FLIP) model. This model computes the global electron
density as a function of height and time. It requires several inputs which are identified
in Figure 4.5. As is evident from this figure, the FLIP model produces a large number of
outputs. Figure 4.6 includes the need for these key inputs in the flow chart.

In addition to the auroral source function, the FLIP model requires as input the
solar EUV flux, neutral winds and the neutral atmosphere. There are several ways to
obtain these. The first option is to use empirical models which provide all three inputs
as a function of geophysical indices such as magnetic and solar activity. However, these
are essentially statistical models derived from existing databases, and do not necessarily
accurately represent conditions on any specific day. The empirical models can be
further constrained by groundbased airglow measurements as illustrated in Figure 4.7.
UAH (our team) has been deeply involved over the last five years in developing
techniques for deriving the solar EUV flux, the neutral atmosphere and winds from
groundbased measurements of airglow and electron densities.

To include the effects of electric fields, the FLIP model is coupled to an
ionospheric electrodynamics model (see Figure 4.8), which derives input from the
groundbased network of radars, ionosondes, magnetometer chains and in situ ISTP E
fields. The electrodynamics model provides the electric fields to the FLIP model which
returns the global conductances to the electrodynamics model, thereby iteratively
improving the global electric field calculation. The FLIP model predicts the electron
density profile as a function of time at the locations of ~ 100 ionosonde and ~ 6 to 7
radar stations. Iteration is continued until the best electron density fit is obtained at all
stations.

Finally, the entire system is coupled with a global thermospheric circulation
model (TGCM) as illustrated in Figure 4.9. The TGCM utilizes the joule heat source and
ion drag momentum source from the ionospheric models, and provides the neutral
thermosphere and winds back to the ionospheric models. Iteration is continued until the
global electron densities best fit the groundbased measurements.

7
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We believe that the science priorities developed here will significantly advance
our understanding of thermospheric, ionospheric magnetospheric coupling. The role of
the ISTP database will be to provide near-continuous global coverage of key inputs to the
system on a 30 second temporal grid allowing the actual response of the high and low
latitude ionosphere and thermosphere to all significant energy sources to modeled in a
time evolution manner.

This scheme is a very ambitious one, requiring large computing resources and
excellent coordination between NASA and the NSF's groundbased network of aeronomy
stations. However, it is highly viable. It can be done, and should be done.

Reprints of relevant papers published on this work are attached in Appendix A.

5. Assessment of Optimizations Possible in UV Imaging Systems

In this study, NASA's future needs in ultraviolet imaging were assessed, and
possible optimizations evaluated. The following instrumental requirements were
identified for the post ISTP area in order to meet the scientific goals of the future.

1. A capability will be needed to image the weak aurora from space.

2. It was noted that strategic planning activities by NASA Headquarters
during the late 90's had identified imaging of magnetospheric extreme ultraviolet
emissions as a key goal for the future. At that time, however, the technology did not
exist to provide the spectral purity and sensitivity needed to successfully image the key
ions of the magnetosphere. Specifically, emissions of ionized helium and atomic oxygen
at 304 A and 834 _ respectively were identified as the prime emissions for imaging.
Two-dimensional imaging of the magnetosphere could provide the first coherent 3-D
picture of the ion populations by tomographic inversion of the images.

The above two goals translate into the following new technology requirements:

Better VUV filters than those developed for ISTP

A new class of instrument is needed with 100 times greater sensitivity
than the existing EUV capability, with 50 A spectral filtering.

A study was carried out to investigate ways of increasing further the
performance achieved with the ISTP filters developed mainly under NAS8-37586. This
problem was solved with two new technology developments:

1. The development of ]1 multilayer coatings - a new design concept.

2. The use of multiple reflectors to improve resolution.

A detailed report on the approach has been submitted for publication in Applied
Optics under the title, "Multiple Reflectors as Narrowband and Broadband VUV Filters".

This technology resulted in a decrease in bandwidth of the ISTP filter at 1356 A,
for example, from ~5.0 nm to 3.2 nm with an increase in transmission from ~25% to
~40%. The work was also presented at the Fall Meeting of the American Geophysical

8



Union in San Francisco, California, December 1990. A copy of these reports is attached

as Appendix B.

In addressing the question of extreme ultraviolet imaging, the thin film design
program developed for the VUV was applied to the EUV region at 83.4 nm. Materials
were identified which could serve as multilayer coatings in this wavelength regime.

Coatings with 60% reflectance at 83.4 nm with out-of-band reflectance of 5%
were designed. These coatings were incorporated into an EUV imager design in a highly
innovative way; the design requires no actual filters in the system. The ISTP UVI
instrument was selected for the imager optical design. This is a three-mirror system.
It was found that by placing the reflective filter coating directly on the mirror surfaces,
the mirrors could be used simultaneously as both the imaging and filtering elements.
The design yielded a net system efficiency of ~20% compared with ~0.2% achieved with
existing technology, thus providing two orders of magnitude improvement in sensitivity,
which meets the sensitivity specifications for magnetospheric imaging of O + ions.

This work was reported in a CSPAR presentation to the University President, Mr.
J. Moquin, on January 22, 1991. Copies of the relevant charts used are included in
Appendix C.
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" _51A-8 l_h
Evolution of Three-Dimensional Plasma Clouds In the

Ionosphnre

T-ZM_ and R W Schunk (Center for Atmospheric and Space

Scim_m, Utah State University, Logan, Utah 84322-4405)

A three-dhnenalonal time-dependent mode( for the motion of

pII_ma clouds in the ionosphere has been developed. In the

model, the ions created from the released neutral gu and the

background ions are treated sepRrately so that the acce_ra-

tlon of the background ions and the deceleration of the cloud

ions can be calculated. The modal takes account of the finite

conductivity along the magnetic field, pressure gradients, stress

tensor, inertial, effects, co(Ibions, thermospherlc winds, and cur-

rent coupling between the cloud and background ionosphere.

Studies are being conducted to contrast the expansion char-

actermtica of both negative and positive ion clouds, long thin

cloudist* and nearly spherical clouds, clouds with and without

bLckground neutral winds, and clouds that are both preionlzed

and photoioniaed. Some of the cloud expansion featureS will be

premnted.

_1A-12 1148h
The Dynamics of Finile.Sized, Low._, Plasma Clouds

l_ie¢led ut an Angle to a Background Mugnefle Field

T Neube_ and R H Miller (Both a:: Space Physics Resemx:h

Laboralory, Umvemhy of Michigan. Ann Arbor. M] 48109-
2143)

0 B _¢_n (Space, Te]econmlunicadon s. and Radioscicncc

laboratory, Stanford University. Stanford, CA 94305-4055)

K-I Nishikaws (Dtparln;¢nt of Physics and A_y.

University oflowL Iowa City, Iowa 52242)

R Roussel-Dupm (Span¢ ScienCe and Technology, Los All•us

National Laboratory, Los All•us, NM 87545)

The dynamics of finite-sizad, low-_, plasma c]oude moving at

angles m a background magnetic fieldhave bc¢o studied by means

of s new throe-dimensional electromagnetic panicle simulation

code. The onset of electric and reagnetic fields,the formation of

charge [aycrs.and the "braking" of the plasma cloud am studied for

a range of Lmbient plasma sod beam paxametera. The electro-

magnetic radiation for a frolic-sizedcloud iscompared with earlier

two-dimensional ana(yiical and numerical results and to

observations from sounding rockets, space shuules and satellitesin

;heEarth's ioonspbere and magnetosphere

_51A-9 11Kh
N_tmcrical 5imulatiom of F..xpamdo_ of a Plasma Cloud

C B Cbea and L_ (Department of ElectricAl and Computer

Engineenug, University of Alabama in Huntsville, Huutsville,

AL 35899; 205-895--6678)

The dynmm_ and expansion of plasma clouds crested by

chemical releuel in space is a complex problem. Some hinetxc

upects of the dynamics are examined by means of one- and

two-dimesmoual nnme_c_l simulations using Vlasov and PIC

codes. The role of electron dynanucs in the expansion is

examlned through the evolution of the electron velocity

distribution function iuside the cloud_ The twc--dimensiona]

PIC code is used to predict the potential structure when the size

of the cloud is vm'ied The evolution of the perpendicular

electric fields aeax the bounda..les of the cloud and their

penetrution iuto the ambient plasma affect the composite

pote_thd strncture, which, in turn, Lffects the field-aligned

pLMmaex'pamuon. Conditions under which field-aligned plums

is the main feature of the dynamics of the cloud will

be palmed.

_1A-1_ 11_h
Getleealion or Equatorial Sprend-F by Colloids -

Cutup•damn of Tb¢ory and Recent Experiments

g _ (N_dard Sl_ce Hight Center, Code 916, Greenbelt,

MD 20771; 301-286-5475)

A _ ford_ fonnmion of equatmial sprnsd-F from the interaction

lu _ F n_ton of hyperveloelty panicle an_w.s formed from
dilpera_ Io_-pedod meteoroids, coumoids, was pre*¢nted several

m qlo, but evidence for a c_moid population was mmxmed and

the _ motion of sl_.ad -F ohee_ed with i ncoberem t, mtter
techntqm_ cmdd not be explained. The theory, however, wu able to

e.xp_in die formation of the electron bite-outs or bubbles, the ple-

a k]rnlght occurrence, the seasonal variations and Imimde dependence

of_aqmad.F. The theory explained the iorl composition m the

prm:oce of Fe °, the freeet mcm res oin¢_ed with rac_ and the
idmtllmJonl at GHz fgequencies. Recem analysis of Pioneer IO and

I I _mmem_ has mpp(ied evidence for the existenor of cem_olds

in _mtel_meta W slmce and their dispersion characteristics. A radar

me.or idgnsmm of dispemed cmmoids has at last been detected m 2

MHz to 140 km altitude. Chemical release experiments were used to

demm'aa_le the formztion of bhe-oum by electron _mchmcnt and to

Joule heating in the spnmd-F region. Shaped.charge chemical

mlesl_ lmaduc_ measurable ionization, demonstmti_ the me of

ton pair fmmmion from critical velocity effccts, thu_ explaining the

upward m_ns measured with incoherent scatter malls.

Furtbemm_, d_ discovery of malden neumd sodium layem and
sporadic Fs [aynzs mltued m sporadic E repmsem anmher silpmm re of

the Crinoid polmlation in the E rt_on, An overview of the theory

m_d _ental evidence will he pn:m:nted,

_IA-11 1154h

Electric Field Formation at Solar Cell Edge Regions

[Thiemxnn & Noxck, Lkngenhardstr. 0, D-7800

Frelburg, We_t Germany)

R W Schunk (Center for Atmospheric and Space Sciences, Utah

State University, Logan, Utah 84322--4405)

Ground tests of negatively biased solar array test modules in

a simulated LEO-plasma environment identified the solar cell

edge region as • critical location. Arc discharges cause car-

bunt•orion spots along the cell peripheries at the Kapton sub-

atrate. Long-term exposure of solar arrays under such condi-

tions will lead to short circuits and, eventually, • complete solar

array powor tom. For a quantitative assessment of this problem,

we p_rformed appropriate self-consistent computer experiments,

simulating the solar cell-substrate*interface. The interaction is

controlled by the electrical and the secondary emission proper-

ales of the target. We will present reaults on the formatlon of

atrortg electric fields, their dynamic features, strengths, direc-

tions and locations.

SA52A CA: 313 Fri 1330h
Chemical Release Experiments in Space II
(joint with SM)
Presiding: P A Bernhardt, Naval
Research Lab

SASZA-113_h INVI_D
The I_cARg gXl_Briments - Overvlev

Paul A Bernhardt (Space Plasma Branch, Plasma Physics
Division, Nava_ geaeerch Laboratory, Vashingron, DC

20375; 202-767-0196)

The releases of electron attachment materials into the

mid-latitude and equatorial ionospheric have been

shorn to be effaative gmnerstors Of (1) large aclle

piaslm depletions, (2) enhanced plasma raves, Ind (3)

bright air•log clouds. D_ring the Negative Ion,
Cation Eelease Experiments (NICARE-1 and -2), nickel

earbonyl, tclf_urolethyl bromide, and sulfur

hexafluoride vere released betveen 300 and 380 ks

mltltude into the dusk ionosphere. The experiments

yore conducted from rockats launched from the gallops

Plight Facility, Virginia and true the KvaJalstn

Hisstle Range, Narshan Islands. For comparison,
NICAHE-2 also contained a chemically Inert, atomic

release to estimate the effect of "snug-plug" density

changes, The electron attachment oolecules produced

localised _ensity rcductlons vith factors ranging
berveen tO z and 10 4, The density changes vere

measured vith in situ Lan_mulr probes, radio l_acon

signals, and ineoharenr scatter radar stRnals. Plasma
vsves from DC to over several Hgz vere stlmulated by

the releases. Some of the nev gave modes can be

directly traced to the presence of negative ions In

the plasma. Enhanced optical emissions vere the

result of chemllullnmscent rmactions betveen the

neutral and plasma eolponants of the releases and

bmck_round anvironment.

Research supported by oNg and NASA.

_A,_-_ 13_

Simulations of High (Orbital) Velocity Releases of

Electron Attachment Materlahi in the Ionosphere*

and P A Bernhardt (Space Plasma Branch,

Pluma Physics Division, Naval Research Laboratory,

Washington DC 20375; 202-767-36301

Two-dimemfional numerical simulations of high (orbital) ve

locity releases of electron attachment material clouds across

the geomagnetic field in the F region are presented. The

electrostatic simulation model includes eIectron attachmenl

and mutual neutralization chemistry, self consistent electric

fields, three species transport and ion inertia The dynam

ics of the plasma irregularities produced are studied st early

and at late times after release At early times, the pluma

enhancement produced shows steeping of the backside and

generation of vortices due to a Kelvin-Helmhollz instability

Al late times when the cloud has slowed due to collisions,

the plums depression produced shows structuring due to the

E × B interchange instability if a background neutral wind

is present. The effects of the variation of the ion-neutral col-
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lision frequency with altitude on the irregularity structuring

wit] be discussed in detail.

"Rese_ch sponsored by ONT

_2A-3 14_h
Electric Field and L_nglulr Probe Heasureaants in

O_mmieally Hodified Ionospheres*

C L gtefrln_, P Rodriguez, D G Haas, H H Haumback,

N-Na---'_r, P A Bernhardt, (Space Plasma Branch,

Plasma Physics Division, Naval Research

Laboratory, Hashlngron, DC 20375-5000)

A sophisticated set of ln-situ plasma diagnostics

have been developed to study the perturbation

effects of chemical releases on the ionosphere.

Electric field, plasma gave and ion•muir probe data

taken during the NICARE I b 2 experiments vill be

discussed vith an emphssis on nevly developed

measurements. The Langmuir Probe measurements
characterize the electron density depletions or

enhancements and electric field measurements provide

iniormation on cloud polarization. Electrostatic

plasma oscillations are almost a]vays [ound in the

highly disturbed regions near a chemical releases.

Our plasma gave receiver tan provide information on

the spectral, temporal and k-space characteristics

of the plasma eaves over a broad frequency range (DC
tO f0 BHz). _e believe these measurements rill

ansver many critical questions relating to

effectiveness of various chemicals as ionospheric

perturbation sources.

*Research supported by ONR and NASA.

_2A-4 142gh
Negative Ion Plasma Mares Observed in the h'_CAI_

C,_elic•l Release Experiments*

godriguez, C L Starring, P G Haas, P A Bernhardt,
P V Nuygen, H N Baumback, D N Halker. (Space

Plasma Bzanch, Plasma Physics Division, Navll

Research Laboratory, Hashington, DC 20375-50OD)

The release of several electron-attachment chemicals

(SF6, Ni(COI4, and CF3Br) in the ionosphere by the

NICARE t and 2 sounding rockets have produced local

plasmas in vhich the negative charge Is carried by i

heavy ion and tn _hich there ar_ none or very fee

electrons present. Such a plasma corresponds to a

nee environment for space experiments and ve have
observed several varieties of lov frequency

electrostatic vsves vhlch appear to be "negative ion

ptasla raves." Ve report the observations of ragas
based on electric field and plasma density

_easurements taken vith the N_L electric field

sensors and current probes. Electric field and

plasma density fluctuations vithin the electron-

depleted ionospheric "hole" are discussed, vith In

illustration ot the evolution of the rave spectrus

as the diagnostic vehicle leaves the region of

electron depletion and re-enters the normal

background ionosphere. The possible effects of gave

normal orientations on the measured spectrum are

discussed, It is believed that these experiments

have produced the first coil|•Sunless space plasma

in vhich negative ion plasma eaves have been
detected.

*Research supported by 0N_ and NASA.

_A-5 1435h

Far UItruvlolet Spectrometer Observations for the

NICARE Rocket Experiment

A _. _C_ and J B Pranke (Both at: Space Sciences

Laboratory, The Aerospace Corporation, PO Bo-_ 92957, LOB

Angeles, CA 90009)
P A Bornh_dt (Naval Resea_h Laboratory, 4555 Ove_rlook Av_u_

SW, Washinglon, DC 20375-5000)

A 1/8 m Ebcn-FtstJe Sp¢Cfforrtetcr which scanned the far ulolviolet

wavelength range from 125 to 149 nm st 1.0 nm spectral resolution

was included in the NICARE rocket payload launched 23 Oc_b_

1999 from Wallops Island, VA The instrument viewed

perpendicular to the rocket spin axis and recorded emissions from OI

((30.4), O((135.6) and • feature near (48.0 nm, possibly a carbon

line, that w_rc enhanced during some of the chemical re(cases. "rhe

absolute intensity of the emissions and comparison with expoC_

atrglow emission rams will be lm:scmad

_A-6 14_h
HF Observalions of Ionospheric Depletions

Produced by Chemica] Releases

_T_._Iz_ P. A. A_l_o, and R. C.

Carlos (Los AJ_mos National Laboratory,

SST-7. MS D46_, P.O. Box ]663, Los Alamo,,

New Mexico 87545; (505) 667-1542)

We have made observations of the ionospheric depletions

produced by the NICARE I and II cherrdcal releases using
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Auroral Modeling of the 3371 Emission Rate:

Dependence on Characteristic Electron Energy

P. G. RICHARDS

Computer Science Department and Center for Space Plasma and Aeronomic ReJearch

Univerjt=y of Alabama in HuntJvtlle

D. G. TORn

Physics Department and Center/or Space Plasma and Aeronomic Research

University o/Alabama in Huntsville

We have developed an efficient two-stream auroral electron model to study the deposition of

auroral energy and the dependence of auroral emission rates on characteristic energy. Tiffs model

incorporates the concept of average energy loss to reduce the computation time. Our simple two-

stream model produces integrated emission rates that are in excellent agreement with the much

more complex multistream model of Strickland et al. (1983) but disagrees with a recent study

by Rees and Lummerzheim (1989) that indicates that the N2 second positive emission rate is a

strongly decreasing function of the characteristic energy of the precipitating flux. Our calculations

reveal that a 10 keV electron will undergo approximately 160 ionizing collisions with an average

energy loss per collision of 62 eV before thermalizing. The secondary electrons arc created with

an average energy of 42 eV. When all processes including the backscuttered escape fluxes arc

taken into account, the average energy loss per electron-ion pair is 35 eV in good agreement with

laboratory results.

I. INTRODUCTION

There is currently renewed interest in the use of au-

roral optical emission rates to deduce the characteris-

tics of the precipitating particle fluxes, and ultimately,

the global auroral energy input to the Earth's upper

atmosphere, hnages from the Dynanfics Explorer satel-

lite have been used by Rees et al. [1988] to calculate

the energetic electron flux and its characteristic energy.

hnaging instruments planned for the ISTP mission will

monitor key UV emissions on a global scale for the ex-

press purpose of determining the global energy input.
Early work in deterinining auroral particle character-

istics from emissions concentrated on the use of the ra-

tios of atomic oxygen emission rates (6300 A, 5577 ._) to

lnolecular nitrogen ion emission rates (3914 It, 4278 It)

to deduce the incident auroral spectrum [Rees and

Luckey, 1974; ValIance Jones, 1975; Shepherd et al.,

1980; Strickland et al., 1983]. The higher energy auroral

electrons penetrate deeper into the thermosphere where

the relative proportion of atomic oxygen is smaller.

Thus the ratio of atomic to molecular emission rates de-

creases with increasing electron energy. Unfortunately,

chenfical processes play an important role in the atonfic

oxygen emissions and it is di_cult to separate the ef-

fects caused by the characteristics of the auroral energy

flux from the effects caused by changes in the atmo-

spheric composition. Therefore, it would be useful to
find an emission rate ratio that is sensitive to the au-

roral characteristics but which is not complicated by
chenfical factors.

Copyright 1990 by the American Geophysical Union.

Paper number 90JA00233.

0148-0227/90/90JA-00233505.00

Recently, Rees and Lummerzheim [1989] suggested

that the ratio of the second positive to first negative
emission rates could be used to determine the charac-

teristic energy of the auroral electron flux. Using an
auroral electron model developed by Lummerzheim e_

al. [1989], Rees and Lummerzheim [1989] found that

the N,. second positive (3371 ._ ) enfission rate de-

creases substantially with increasing characteristic en-

ergy of the auroral electrons while the N + emission
rates are ahnost constant. This ratio would be an at-

tractive alternative to those used previously because it

would be independent of atmospheric composition and

both emissions are prompt, thus elinfinating chemical
effects. Unfortunately, the calculations of Rees and

Lummerzheim [1989] are in conflict with the earlier cal-
culations by DanielI and Strickland [1986] who found

that the 3371 A emission rate was nearly independent

of the characteristic energy.

The experimental evidence also seems to be in con-

flict. Rees and Lummerzheim [1989! present data from

high flying aircraft that support their theoretical calcu-

lations. On the other hand, Solomon [1989] presented

data from the visible airglow instrument on the At-

mosphere Explorer C satellite showing that the ratio

of the N., 3371 ._ to N + 4278 It emission rates has

only a small dependence on the characteristic energy,

which can be accounted for by contamination of the

3371 ._. second positive elnission by the Vegatd-Kaplan

(0-9) baud. The VAE data support the earlier calcula-

tions of Daniell and S_rickland [1986] and Strickland et

el. [1983]. Solomon was able to reproduce the observed

ratios using his own two-stream auroral electron depo-

sition code. We note that the experimental data pre-

sented by Solomon [1989] for the ratio of N., 3371 ._ to

N + 4278 ._ is in excellent agreement with the ratio of

N., 3371 _ to N + 3914 _ that was measured on a 1974

rocket flight by Sharp et al. [1979].
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The source of the discrepancy between the models is
difficult to understand. Both Rees and Lummerzheim

[1989] and Sfrickland et al. [1983] use relatively col**-
plete ,nulti-stream models. Tile model used by Solomon
[1989] is a simpler two-stream model and his calcula-
tio;_5 are ill agreement with the ,alculations of Strick-

land et el. [1983] and Danieli ,_d S_::kland [1986]
which show little variation in the 3371 A to
3914 ._. emission rate ratio as a function _f characteristic

energy. In this paper we present calcula;ions of a nun,-
ber of important enfission rates obtained from a two-
stream auroral electron model that we have developed.
Tile calculated emission rates for the 3371 ._ enfission
rate and a number of other emission rates are in accord

with the earfier calculations of Strickland et al. [1983]
and Daniell and Striekland [1986] for the dependence
on characteristic energy of the precipitating flux. How-
ever, mainly due to the use of a revised cross section,
our atomic oxygen 1356 ,_ emission rate is a factor
of 2.5 lower than that calculated by Sf-ickland et al.
[1983 I.

2. MODEL

2.1. General Principles

The model that we have developed is based on the
two-stream photoelectron flux model of Nagy and Banks
[1970] that was subsequently extended to 500 eV and
combined with a continuous energy loss model to calcu-
late auroral electron fluxes by Banks et al. [1974]. Al-
though both our model and the model of Solomon et al.

[1988] have origins in tile Nagy and Banks [1970] two-
stream model, they have evolved substantially along en-
tirely separate paths. Our model owes much to our ear-
tier work with the ionospheric photoelectron flux

[Richards and Tort, 1984; 1985a].
By incorporating a variable energy grid developed by

Swartz [1985] and a variable altitude grid we have been
able to extend the two-stream model up to energies
greater than 20 keV. This has elinfinated problems en-
countered by Banks et el. [1974] in matching the con-
tiuuous slowing down approach that they used above
500 eV with tile two-stream approach they used below

500 eV. Tile continuously variable altitude grid allows
altitude steps of less than a kilometer below 90 km up
to 50 km at 500 km with a manageable number of grid
points.

Further economy ill computer time is achieved by in-
troducing the concept of an average energy loss for an
excitation or an ionization event. This concept allows
the use of only the total excitation and ionization cross
sections instead of treating each partial excitation or
ionization process separately. That is, the excitation
(or ionization) is treated as arising from a single aver-
age state for each thermospheric species. The average
energy loss depends on the species and also on the en-
ergy of the primary electron. The calculation of the
emission rates then becomes a two stage process with
just the total cross sections being needed to calculate
the electron flux as a function of energy and altitude
in the first stage. In the second stage, the partial cross
sections are folded with the electron fluxes to produce
the excitation rates.

For each of the 3 main neutral atmospheric compo-

nents (O, O,., N.,) the total cross sections are made up
of partial cross sections fro*** the numerous electronic
states of each species each corresponding to a different

energy state of the atom or molecule. Ill addition, each
electronic state of a molecuh can be created in any one

of a large number of vibrational energy states. A col**-
plete evaluation of the electron flux would require the
separate accounting of all these energy losses which we
have replaced with a single, energy dependent average
energy loss for the excitation and ionization of each of
the three main thermospheric species O, O_, and N2.

The treatment of excitation processes is relatively

straightforward; the average energy loss is specified and
the electrons deposited in the correct lower energy bin.
However, ionizing collisions are ***ore complex because
of the production of secondary electrons which may be
produced with energies ranging from 0 up to Ep - Ii
where Ep is the energy of the primary electron and Ii is
the ionization potential of the state i being produced.
We follow the approach of Banks et al. [1974] and des-
ignate the higher energy electron as the degraded pri-
mary and the lower energy electron as the secondary.
This means that the maximun, secondary energy is then

(E v - Ii)/2 as is the minimum energy of the degraded
primary. We treat ionization as arising from a single
state with an average ionization potential l and we use
the measured secondary electron distributions of Opal

et al. [1971] to deternfine the average energy E, of the
secondary electrons produced by an electron of energy

E r (we note that the measured secondary electron dis-
tributions are in fact a sum of the contributions from

all the ionization states). The average energy of the
degraded primaries is then Ep - [ - E,. A separate
ionization potential could be used for each species but
a further improvement in computational efficiency can

be made by observing that the ionization potentials and
secondary electron distributions are similar enough that

a single ionization potential and secondary electron dis-
tribntion for all 3 major species wilt suffice. Since N_ is
the most important species in aurora, we adopt the N2
ionization characteristics. At each electron energy, the
total number of secondary electrons from O, O.,, and N2
is calculated and then they are distributed according to
the measured secondary electron distributions of Opal
e_ al. [1971]. The model has been found to conserve
energy to better than 5% for characteristic energies in
the range .1 to 20 keV.

2.2. Average Ionization Potentials

The calculation of the average ionization potential

follows from the knowledge of the ionization potentials
and the partial cross sections for the various ionization
states of each of the thermospheric species. For exam-

ple, Nn ionization results in the formation of the X, A,
and B states of N + and also N + which arises from sev-
eral higher lying states that dissociate. The ionization
potentials for the X, A, and B states are 15.6, 16.8, and
18.8 eV respectively while the bulk of the N + probably
arises from a state with a threshold near 37 eV [//*'d-

man and Zipf, 1986]. The actual energy lost by the
primary electrons may be greater than threshold due
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to tile ions being vibrationally excited and because, in

the case of dissociative ionization, the atomic fragments
are observed to carry substantial kinetic energy [Lil-
tuna and Sto," dale, 1975]. To complete the calculation
of tile average ionization energy for N_. we also need
tile ratios of the partk., cross sections. We examine
the high energy case first where the proportions of the
various partial cross sections are practically constant
and the cai,,llation is straightforward. Above approxi-
mately 100 eV, dissociation accounts for -.-20% [Rapp et
al., 1965] and the B state _10% [Borst arid Zipf, 1970]
of the total cross section. According to Cartwright et
al. [1975], the X and A state cross sections are ap-

proximately equal (that is, _35%). Using these per-
*ntages for the partial cross sections and ionization

,_otentials given above, the average ionization potential
is -_20 eV for high energy electron impact ionization of
N2. We now examine the low energy average energy loss
per collision. The average ionization potential begins
at 15.6 eV at threshold when the X state is produced
but increases to _16 eV above 17 eV when the A stale

threshold is reached. There is only a marginal increase
when the B state threshold is reached at 18.8 eV because
it accounts for less than 10% of the total cross section

at these energies and the energy loss of 18.8 eV is only

marginally larger than 16.8 eV. After about 30 eV dis-
sociative ionization becomes important. The ionization

potential then rises steadily to approximately 19 eV at
50 eV before leveling off toward 20 eV at high energies.

A similar calculation yields an average ionization po-
tential of approximately 18 eV for both O and O2, at
high energies. Because N,. is the dominant constituent
and all three ionization potentials are similar, we use
lie average N,. ionization potential for all three species.

This simplifies the calculation and reduces the compu-
tation time without introducing significant errors. The
adopted ionization and excitation energy losses as a
function of primary electron energy are shown in Fig-
ure 1. This figure also shows the average energy of the
secondary electrons as a function of the pmnary en-
ergy. Below 25 eV the ionization potential is assumed
to be 16 eV while above 25 eV it is represented by

10 (1 + (1 - 15/E) 1/2) eV.

2.3. Average Secondary Electron Energy

To obtain the secondary electron distribution we

adopt the Banks et al. [1974] parameterization of the
Opal et al. [1971] measured distributions. The proba-
bility of a secondary electron of energy E, is given by

A

P,(E,) - 1 + (E,/E) _" (1)

where A = [(_7 arctan(E,,,/J_)- l] is a normalization fac-
tor that ensures a total probability of unity when in-

tegrated over all secondary energies from 0 to E,,, =

(E v - I)/2 and E=14 is an empirical normalization fac-
tor. The product of E, and Equation 1 integrated over

energy yields the average secondary electron energy for
a primary energy E v as

z., =05 a g:ln (1 + <S,/g):) (2)
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Fig. 1. Average energy losses per collision and average secondary

electron energies (E,,.) as a fu.nction of primary electron energy.

The average ionization potential is labelled I and the total en-

ergy loss per ionization is labelled I+E,,,. The average excitation

potentials are indicated by an asterisk and the O; excitation po-

tential is set equal to that of N2. Note that below 6 eV, the N2

excitation potential is set at 1 eV.

The dependence of the average secondary energy on

the primary energy is shown in Figure 1 along with
the average total energy loss of the primary (I + E_).
The average energy of the secondaries increases steadily
from 0 near threshold to 52 eV for 10 keV primary elec-

trons. The total energy loss per ionizing collision for
10 keV electrons is 72 eV, when the 20 eV ionization

potential is included. The average energy of the secon-
daries is approximately equal to the ionization energy
for 200 eV primary electrons.

A quantity of interest, in relation to energy degra-
dation of high energy electrons, is the average energy
required to produce each electron-ion pair. The aver-

age energy required to produce e_ch electron-ion pair
is a quantity that is independent of electron energy
and is also remarkably independent of the species be-

ing ionized. The experimental value for the energy lost
per electron-ion pair for high energy electron is 35 eV

[V_lentine and Cgrran, 1958]. This energy loss per
electron-ion pair was used in early auroral electron de-

position codes [Rees, 1963: Rees et al. 1969; Rees and
Jones, 1973].

An approximate value for the energy loss per electron-
ion pair can be deduced by using the average energy
losses depicted in Figure 1, assuming that for electron
energies above approximately 100 eV the energy lost
to excitation collisions is small and can be neglected.
With this assumption, it requires about 160 ionizing
collisions to thermalize a single 10 keV electron. Thus,

on the average, 62 eV is lost in the creation of each of
the 160 electron-ion pairs. Since the ionization energy
is 20 eV for electron energies above 100 eV, the average

energy of the secondaries is -_42 eV. This means that
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the 160 secondary electrons are sufficiently energetic to

create one more electron-ion pair each. If all secon-

daries created an additional electron-ion pair, the total

number of pairs would be 320 and the average energy

per electron-ion pair would decrease from 62 to 31 eV.

In reality this does not happen because, below 100 eV,

excitation processes begin to compete effectively with

the ionization processes for the available electron en-

ergy and the number of additional electron-ion pairs

produced by the secondary electrons would be less than

160. In fact, for a 42 eV electron the total ionization

and excitation cross sections are approximately equal

attd only half the secondaries could be expected to pro-

duce all additional electron-ion pair. This agrees with

our previous calculations that show that a third rather

than a half, of the total ionization is created by de-

graded primaries and secondaries with energies below

100 eV [Richards and Tore, 1985b]. Thus the original

10 keV electron would ultimately produce about 240

electron ion pairs and yield an average energy loss per

electron-ion pair of 42 eV. This is only all estimate of

the energy lost per electron-ion pair and a more detailed

calculation including transport is required to determine

the actual value. It was pointed out by Banks ef al.

[1971] that escaping backscattered electrons will be lost

to the system and act to increase the energy loss per

electron-ion pair.

We have SUlnmed the total ion production rate in our

full auroral calculation, and we obtain an average en-

ergy loss per electron-ion pair of 35 eV, which is smaller

than our estimate but in agreement with the laboratory

measured value. A slightly higher value of 37 eV was

obtained by Foz and Victor [1988] using their discrete

local energy loss method. The reason that the energy

lost per electron-ion pair is not a strong function of

electron energy has to do with the relationship between

the average secondary electron energy and the primary

electron energy. Electrons with higher initial energies

suffer a greater energy loss per collision as they degrade

but they produce higher energy secondaries which are

more likely to generate secondary ionization. For ex-

ample, a 1 keV electron will undergo only 22 ionizing

collisions with an average energy loss of 45 eV before

it thermalizes. Thus, the secondary electrons have an

average energy of only 25 eV compared to the 42 eV for

the 10 keV electrons and are much less likely to produce
additional ions.

2.4. Cross Sections

In a number of previous studies of the ionospheric

photoelectron flux we have chosen measured total exci-

tation cross sectious that produce good agreement be-

tween theory and the photoelectron spectrometer mea-

surements front tile AE-E satellite [Lee et al., 1980]. At

low altitudes where N2 is the dominant species, the to-

tal cross section obtained front electron mobility studies

by Pitchford and Phelps [1982] was found to be com-

patible with the PES measurements. At high altitudes

where atomic oxygen is the dominant species, the emis-

sion cross sections measured by Zipf and co-workers pro-

duced good agreement between theory and PES mea-

surements. These total cross sections for energies be-

low 100 eV have been published by Richards and Tore

[1988]. Basically the same cross sections have been used
in this study but they have been reparameterized to ex-

tend tllem to higher energies.

Above 100 eV, the excitation cross sections decay
rapidly with increasing energy and are much less im-

portant than tile ionization cross sections both because

they are smaller and because the energy loss per colli-
sion is smaller. The total ionization cross sections are

better established than the total excitation cross sec-

tions although there are some differences [Kieffer and

Dunn, 1966]. We have adopted the N2 and O2 total
ionization cross sections of Rapp and Englander-Golden

[1965] which have also been used by most other mod-
elers. The total ionization cross section for O is from

Brook et al. [197'8]. The elastic cross sections are very

important because of their role in inhibiting transport.
We have used tile elastic cross sections of Solomon et

al. [1988] and also their elastic backscatter coefficients.

The total cross sections used in our auroral model are

shown in Figure 2. Our N2 total excitation cross section

is comparable to that of Solomon et al. [1988] below

25 eV but is smaller at higher energies. The differences

at high energies have little effect on the calculated fluxes
because the excitation cross section is smaller than the

ionization cross section. However, differences in cross

sections below 30 eV produce comparable differences in

fluxes. The N., total excitation cross section of $teiek-

land et al. [1983] is ahnost a factor of two larger than
ours at all energies and their fluxes would be a fac-

tor of two lower below 30 eV, at least below 200 km

where Nx is the donfinant species. The cross sections

of Solomon et al, [1988] and Strickland et al. [1983]

were obtained by sunmfing tile partial cross sections

and there is the possibility of double counting some

cross sections; for example, those that lead to dissocia-

tion. Moreover, Strickland et al. [1983] included large
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Fig. 2. Total elastic, excitation, and ionization cross sections em-
ployed in the model. The ionization cross sections arc indicated
by a plus while the excitation cross sections are indicated by an
asterisk.
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Rydberg cross sections from Green and S_olarski [1972]
which have been revised sharply downward by Porter
et al. [1976]. There is now good agreement between
the total cross section of Pitchford and Phelps [1982]
and the sum of the partial excitation cross sections of
Cartwright et M. [1977a, b] as revised by Trajmar et aI.
[1983], below 20 eV. Above 20 eV, the ionization cross
section becomes an increasingly important component
of the total inelastic cross section and it is not easy to
compare the two cross sections.

The total atomic oxygen excitation cross section em-
ployed by Solomon et al. [1988] is a factor of 2 larger
than ours above 15 eV and will produce a siluilar dif-
ference in flux above 250 km where O is the dominant

species but the atomic oxygen cross section has little
effect on the integrated emission rates. Our atomic oxy-
gen excitation cross section was obtained by summing
the measured emission cross sections for 1304, 1356,
and 1027 _. [Zipf and Erdman, 1985], the 989 cross

section from Gulctcek and Doertng [1988], and the the-
oretical ID and 1S from Henry et al. [1969]. hnplicit in

this procedure is the assumption that the higher lying
triplet and quintet states are included in the 1304 and
1356 emission cross sections via cascade. We have left

out some theoretical Rydberg cross sections proposed
by Jaekman et al. [1977] and some minor states that
radiate directly to the ground state but for which there
is no experimental data. Thus, our cross section must
be regarded as a lower limit.

Figure 3 shows the excitation cross sections for the
second positive (C3r.) and Lyman-Birge-Hopfield
(air,l) systems of N._. Also shown is the cross section

used for calculation of the 0(5S) 1356 _ emission rate.
We obtained this cross section by reducing the measured
cross section of Stone and Zipf [1974] by the factor 3.1
which is the same factor that the 1304 _ emission cross

section of Stone and gipf[1974] was reduced by Zipfand

Erdman [1985]. The (C3r,,) cross section was obtained

al
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Fig. 3. Cross sections for the three excited states giving rise to

the emissions studied in this p_per.

by multiplying the 3371 ./_ cross section of Imami and

Borst [1974] by 4 and the (air,l) cross section is front
Ajello and Shemansky [1985].

We have examined the sensitivity of the emission rate
ratios to cross sections and this will be discussed later.

In all these calculations we have used the 1 erg cm-'_s -t
Gaussian incident flux distribution, and the neutral at-

mosphere employed by StrickIand ef al. [1983].

3. RBSULTS

3.1. Comparison With Previous Work

We have calculated the N._ 3371 ./_, N + 3914 A., N +

4278 _, , O 1356 _ , and several N2 LBH band emission
rates as a fimction of energy and these are shown in

Figure 4. This figure shows that both the 3371/_. and
3914 _. emission rates are independent of the char-

acteristic energy of the precipitating flux for energies
above 2 keV in agreement with the results of Stricktand

et al. [1983] and Daniell and S_rickland [1986]. Not
only is the shape in good agreement but, except for the
1356 _. emission rates, the magnitudes are also in good
agreement. Although the shape of the 1356 }k curve is
in good agreement with that of Strickland et al. [1983],
the magnitude is a factor of 2.5 lower owing to the use
of the revised cross section of gipf and Erdman [1985].

3914

Fig. 4. Calculated emission rates as a function of the characteris-

tic energy for a G aussian energy distribution with a total incident

energy flux of i erg cm -2 s -i . When differences in cross sections

are taken into account, there is excellent agreement with the cal-

culations in Figure 8 of Strickland et al. (1983) and Figure 11 of

Daniell and Strtckland (1986).

ENERGY (keV)
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We have included 02 Schuman-Runge absorption which
affects both the 1356 ]k and the 1200-1600 ]k LBH

bands when the characteristic energies are high and the

electrons penetrate to lower altitudes [Strickland et al.,

1983]. The ratios of the LBH bands are taken from

Ajello and Shemansky [1985].

Our calculated second positive to first negative emis-

sion rate ratios are within 20% of the measured val-

ues for tile N__ emissions. At 10 keV, our 3371 X to

3914 ._ ratio is 0.3 compared to 0.25 from Sharp et al.

[1979] and our 3371 ._, to 4278 ./k ratio is 0.98 compared

to 0.8 from Solomon [1989]. Solomon obtained better

agreement between his model ratios and tile measured

ratios but there is sufficient uncertainty in the input

parameters to account for the differences.

3.2. Sensitivity of Ratios

7..
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We have performed some parameter studies to char-

acterize the sensitivity of the ratio of tile second positive

to first negative integrated emission rates to possible

errors m the model inputs. Obviously, a reduction of

20% in the 3371 ./t emission rate cross section would

bring the calculated and measured values into excellent

agreement but a 30% increase in tile N_. total excitation

cross section has a similar effect by decreasing the low

energy electron flux which is responsible for most of the

3371 _ emission. Likewise, a 30% increase in the N2

total ionization cross section above 100 eV reduces the

ratio from 0.3 to 0.25 by increasing the 3914 _, pro-

duct:-, rate. The integrated ratio is not sensitive to

chan_es of up to a factor of two in most other param-

eters including: the atomic and molecular oxygen in-

elastic cross sections, the O, O.+, and Nz elastic cross

sections and backscatter coefficients, and the relative

concentrations of the species. We estimate a possible

error of 10% in our computed average excitation and

ionization potentials but this has negligible effect on

our computed ratios.

ENERGY(keY)

Fig. 5. The initial partitioning of the incident I erg em -3 s -1

energy flux between ionization, excitotion, thermRl electron heat-
ing, and backscatter as a function of characteristic energy. The
largest proportion of the energy (_35%) goes in::mlly into the
ioldzation potential of the N + wlfile (--.20%) goes into N2 excita-

tion. Only (_16%) is backscattered out of the thermosphere. O

is an important absorber of energy at the lowest energies while
02 becomes increasingly important as the characteristic energy
ncrenses.

3.4. Electron Fluz Spectra

Downward moving fluxes at 120, 174, 223, and 326

km are shown in Figure 6 for a 5 keV incident Gau_ian

flux with an energy flux of 1 erg cm-2s -t. The incident

flux can be seen centered at 5 keV in Figure 6. At the

two highest altitudes, there is very little degradation

of this initial flux but the degradation is noticeable at

174 km and pronounced at 120 kin. Because there is so

3.3. Energy Budget

T!:_ incident electron energy flux is initially patti-

tioned into a large number of excitation and ionization

processes before it finally emerges as heat for the +her-

mosphere or is radiated into space. Figure 5 shows tile

gross energy partition amongst ionizations, excitations,

thermal iectron heating and backscattered escape flux

as a function of characteristic energy. N_ ions capture

tile greatest share of the available energy (35%). Exci-

tation of N_ is next with (20%) wifile only 15% is lost

through he escaping backscattered flux. This escape

flux is ch smaller than the 45% obtained by Banks

et al. [ "4], possibly as a result of the use of different

cross sec:ions and backscatter coefficients. Below 1 keV,

"uization and excitation of atomic oxygen absorption

e important energy sinks for the electron energy, but

they become small for high energy incident fluxes. Ab-

sorption ill molecular oxygen shows the opposite trend,

becoming more important with the deeper penetration

of the higher energy fluxes. Thermal electrons capture

a greater proportion of the available energy, the lower
the characteristic e, :gy.
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Fig. 6. Downward moving electron flux spectra at several alti-

tudes for a 5 keV Gaussian incident flux. The incident energy
flux is 1 erg cm -2 s -l
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little interaction with tile thermosphere for high energy
electrons at the high altitudes, there are few degraded
primaries to fill ill the region between 300 eV and 5 keV.
However, at the lowest altitudes this intermediate en-
ergy range is filled in. Comparison of the downward

fluxes in Figure 6 with tile upward fluxes ill Figure 7
reveals that, below 225 km, where transport is inhib-
ited, the electron flux is isotropic for energies less than
300 eV. At 326 kin, tile upward (escape) flux is a factor
of 2 larger than the downward flux at low energies and
orders of magnitude larger at intermediate energies.

4. CONCLUSIONS

We have developed an efficient two-stream auroral
electron model that incorporates the concept of aver-
age energy loss. This model produces integrated emis-
sion rates that are in excellent agreement with the more
sophisticated multi-stream model of Strickland et al.
[1983] but is in disagreement with tile model of Rees and
Lummerzheim [1989] with regards to tile energy depen-

dence of the N_. 3371 A second positive emission rate.
Our calculations give a value of 35 eV for tile average
energy lost per electron-ion pair produced independent

of primary electron energy and we have explained this
behavior in terms of tile variation ill the energy of the

secondary electrons. We find that more than 30% of

the initial energy flux is stored initially as ionization
energy of N + while about 20% goes into excited states
of N_. while only 15% is backscattered out of tile ther-
mosphere. All other processes are minor except at low
incident energies where 20% of the energy is stored in
atomic oxygen ions.
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Auroral Emissions on the Neutral Atmosphere
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Images of the enure auroral oval at carefully selected wavelengths contain information on the global energy

influx due to energetic panicles and some information on the characteristic energy of the precipitating panicles

In this paper we investigate the sensitivity of selected auroral emissions to changes in the neutral atmosphere. In

parlicular, we examine the behavmr o( Ol 1356 A and two Lyman Birge Hopfield (LBH) bands and their ratios

tt'_ each other with changing atmosphenc composmon. The two LBH bands are selected so that one lies in the

region ol slrong O2 ab_,orptu)n it 46..1 A) and one lies at a wavelength where Oz absorption is effectively negli-

gible ( 1838 A ). We find that for annc_pated average uncertainties in the neutral atmosphere (factor of 2 at auroral

altitudes), the resultant change m the modeled intensities _s comparable to or less than the uncertainty in the

neutral atmosphere. The smallest vanatmns, for example, are R)r 1 1838 (approximately 10 to 20%) while the

largest varmtmn Is seen m the t)l 1356 A ,emission which is linear with IO] to within 20%. We have also

investigated the dependence ol these intensities, and their ratios, to much larger changes in the composition tie..

[OI/IN:I) xuch as m_ght be encountered m large magneuc storms, or over seasonal or solar cycle extremes. We

find that the variatmn in the I 1356d 1838 ratio over the equivalent of a solar cycle is less than 50%. The

',ummer-to-wmter changes are approximately a factor of 2, The I 1356/I 1838 ratio is a very. sensitive indicator of

the characteristic energy, showing a change of 13 over the energy range 200 eV to l0 keV The corresponding

change in the LBH long-to-short wavelength ratio is much less (about a factor of 3). However. the latter is

insensitive to changes in the neutral atmosphere ! <20% changes in LBH emission ratio for large changes in N:I.

The three emissions therefore potentially provide a most valuable diagnostic of particle characteristic energy and

energy flux.

I. INTRODUCTION

While in situ observations of energetic particles provide

accurate reformation on the particle characteristics at the point of

measurement. _magmg from space of the entire auroral oval holds

the potential for providing details on total auroral energy influx.

c,,ttmatcs ol the characteristic energy of the auroral pamcles, and

Ihe capabilit.', to map and relate the rootpnnt of this derived

informatton back along the magnenc field lines to various regions

of the magnetosphere Auroral imaging in the vacuum ultraviolet

permits observations of the regions of interest under both day and

night conditions. Work by Rees and Luckey [1974] on the rattos

of visible emtssions, UV emission intensity calculations by

Strwkland et al. 119831. and analysis ot UV auroral spectra by

/_himoto eta/. [19881 all indicate the potential value of using

rattos of emission intensities to study auroral processes. A major

focus of work in this area at the present time is to establish the

quantttati'.e footing on which such determinations can be placed.

With the exception of HI Lyc_, the Ol multiplets at 1304 ,_ and

1356 ,_ and the N_, Lyman Birge Hopfield tLBH) bands are the

most prominent vacuum ultraviolet auroral emissions. The Ol

1304 A emission has a high efficiency for multiple scattering. As

a result, it has limited use for actual auroral imaging, although it

does have potential value as an indicator of the O concentration,

While the 1356 A emission does undergo multiple scattering, the

efficiency is relatively small [Strickland and Anderson. 19831 and

we ignore multiple scattering for 1 1356 for this study. Similar

Copyright 1990 by the American Geophysical Union.

Paper number 89JA03771.
014g-0227,'90,89JA-03771 $05.00

considerations allow us to also ignore multiple scattering for the

N, LBH emissions that are also considered in this study. The OI

1356 ,a, emission is absorbed increasingly by O_, with decreasing

altitude. Thus its intensity ,,'aries strongly (inversely) with

increasing depth of penetration of the incident auroral electrons

and hence with increasing energy. The N, LBH transttions are

electric dipole forbidden and the only prominent excitation mech-

anism is electron impact. The LBH emission may therefore serve

as a direct measure of the total energy llux of charged particles

into the atmosphere. The longer wavelength LBH bands, which

lie outside the region of substantial O_, absorption, are useful

indicators of the total energy influx, while the long-to-short

wavelength LBH intensity ratio provides information on the O,_,

and thus also some information on energy. These are the

emissions (OI 1356, long and short wavelength LBH) on which

we shall concentrate in this study.

The purpose of this paper is to examine the sensitivity of these

emissions to both likely uncertainties and anticipated changes in

the neutral atmosphere. This is just one step in the process of mak-

ing quantitative interpretations of auroral images, but an

important one. We will consider other aspects (energy spectral

characteristics and wavelength spectral extraction} elsewhere. In

this paper we conduct a series of sensitivity studies using an

auroral emission code that has been developed by our group

[Richards and Torr. 1990]. The results are discussed below.

2. DESCRIPTION OF AURORAL CODE

The behavior of auroral O! 1356 and N, LBH emissions has

been studied with the use of an auroral computer model. The

model is a two-stream auroral electron energy loss code that deter-

mines the energy degradation of the primary, spectrum as a rune-

i" ;:.-Mi.: 0..._ PRECEDING P/1GE ELA_,_K NO'[ "" _""
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lion of energy and altitude and determines the production rates of

prominent auroral emissions. A more complete description of the

program, the selected cross sections, and comparison with other

auroral models is given by Richa,,.:_ and Torr [1990]. The

N: (a"rr._,) cross sectton, as well as tl • ,auos of the individual LBH

bands are taken from Ale/Io and St, cmanskvi1985]. ,Attenuation

due to molecular oxygen absorption is explicitly computed with

O, absorpnon cross sections taken from Ogawa and Ogawa

LIO751 and Hu&on 119711. The model currently assumes that 02

absorption at wavelengths bevond 1750 A can be ignored.

The model is ontimized by incorporating variable energy bins

[Torr et el. 1974: Swart:. 19851 for the energy grid. To prevent

numerical instabilities and violation of energy conservation, the

altitude grid is variable to allow small grid steps (less than i km)

at low altitudes. As a result, energy is typically conserved

to within 10%. The code utilizes either the MSIS-86 neutral

atmosphere [Hedin. 1987] or a user-supplied atmosphere. Either

monoenergetic fluxes or a specified energy spectrum may be

used. The incident energy spectrum may be modeled as a

Gausstan or Maxwetlian distribution, after Strickland et el.

119831 (hereafter S/W3. or a user-supplied distribution may be

used All simulations reported below employed a I erg cm 2 s-t

Gaussian incident flux distribution. The Gaussian scale parame-

ter. labeled W in SJW. has been set equal to 0.25 E,,m,,- which

yields a full width at half maximum of 0.5 [ln2] _'-' Echo,-, where

E,:h,r is the characteristic energy.

3. SENSITIVITY STUDIES

The emission studies reported here involved modeling auroral

cmissions at local midnight at 60 degrees north latitude. Table t

lists thc MSIS parameters used in this study as well as dctailing

Ihe range of solar activity investigated in the latter part of the
study

TABLE f \ISIS Model Parameters

St)lar _t.llVli',

Minimum \loderat¢ \laxlmum

I:,+, r cm Flux lndc_ 75 Ill) 200

\",crm2e F,,, . cm Index 75 l lO 200

\p Magnetic .\ells'it', index 4 20 IO(l

(.;cographtc latitude. 6t) degrees: geographic longitude. 0 degrees: ",olar
apparcnl I_me. tit) ht_urs: day,, 173. 356.

Three emission ratios were studied. The first ratio was Ol 1356i

I.BH_ ..... v,herc LBH+,,,__ dcsignatcs an N, LBH emission not

,,trongly dominated by O., absorption. Specifically. the 12.8/band

at 1838 A was chosen lbr this purpose. Second, the ratio OI 1356/

LBH,h,,, was also modeled to investigate the relative influence of

absorptton by molecular oxygen. Here. LBH,h°,_ is represented by

the ( I. I I band at 1464 ,_. By analogy with the previous definition

LBH,h°r_ is an LBH emission which is strongly absorbed by O2.

The final ratio studied was LBHt,,,_,LBH,h,m. The volume emis-

sion rates integrated over altitude give the surface brightness or

column intensity of the emission which we shall designate I 1356,

1 1464. and I 1838. These are the intensities that would be seen by

a nadir viewing instrument from above the emission layer.

3.1. Sensitivity' to the Uncertainty of a Single Constituent

The first question we chose to investigate was the dependence
of the selected emissions and emission ratios on the uncertainties

at any given time in our knowledge of the neutral atmosphere. We

have assumed for this purpose that if we base our calculations on

the MSIS-86 model atmosphere, the concentrations of O, O2, or

N2 at auroral altitudes may on the average be uncertain by as much

as a factor of 2. There will be occasions on which the uncertainty

will exceed a factor of 2. but typically it will be less. This is

similar to studies performed in SJW, but extends the investigation

to study the dependence of auroral emissions to each of the major

atmospheric constituents. In addition, in section 3.2 below, we

further extend the study to include larger compositional variations

due to seasonal and solar cyclic variations.

The unperturbed, or reference, atmosphere is an MSIS model

for high solar activity at summer solstice. Figure 1. Figure 2

+013

350 _k _ + , , r i !

3OO

_" 250

II,

200

150 [

50 i I t £ i [°1 i 1 I

1E+6 1E+9 1E+12 1E+15

Number Density (cm_

Fig. I. MSIS-86 reference atmosphere used as the standard case in this

sludy (Day = 173. Fm 7 = 200. Ap = If)O).

0.3 I I I I

0.1

n,-
..'lg

t"

t"

0.01
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I t I I

0 2 4 6 8 10

Energy (kev)
Fig. 2. Nadir viewing column brlghmesses tl 1356.1 1464. and 1 1838)

calculated using the reference atmosphere shown in Figure I. The

diamonds here and in the remainder of the figures show the selected

Gaussian characteristic energies tbr the incident electron energy
distribution.
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``hows the computed I 1356, I 1464, and I 1838 intensities for this

model atmosphere as a function of energy over the range 200 eV

to I0 keV as determined by our auroral code. In what follows we

,,hall compare these results with those obtained when each of the

atmospheric constituents (O. O__. Nz) is. in turn. individually

multiplied by 2 at all altitudes, while the other two are held

constant.

Before examining the results of these atmospheric changes, let

us consider the possible impact of the changes. Doubling the con-

centration of a constituent might at first be expected to double the

effect of that specie on the column brightness of the monitored

auroral emissions. In reality, however, there are a number of

_ possible options in the interaction of the penetrating electrons and

the atmospheric gases that render the situation more complex. An

electron of a given initial energy will undergo a fixed number of

collisions in a particular gas before thermalizing. Thus in the very,

simple case of a single constituent atmosphere, changing the con-

eentratlon simply raises or lowers the altitude of the peak energy

loss (and peak emission). This example (single-constituent

atmospherel is representative of those altitudes in which the con-

centration of one atmospheric constituent dominates. From Figure
1 it can be seen that <for the conditions chosenl O tends to

dominate above 400 km and N, tends to dominate below 300 kin.

In a mixture of gases, increasing the concentration of one specie

relative to the others may also have the effect of raising the

penetration depth. However. the gases will compete for incoming

electrons in proportion to their mixing ratios and collision cross

sections, and the ratio of the resulting emissions changes

accordingly.

Figure 3 shows the volume emission rate profiles for Ol 1356 A

photons for the reference atmosphere case for selected energies.

Only the very sot) electrons t<200 eV) lose their energy in the

altitude region where O is the major species. All other energies lie

in altitude regions where the various gases can compete for

collisons with the precipitating electrons. Thus. for example,

increasing the concentration of N, will result in a decrease in the

production of OI 1356 ,_ photons, because electrons that would

have collided with O atoms now have an increased probability of

colliding with N2 molecules. The results of changing the O. Oz,

and N, concentrations individually by a factor of 2 are shown in

Figures 4 and 5.

500

4OO

" 300

1 O0 20 k_v

0 i i ...... | ' • i,,,

o.oi o,I 1000
. , ,..,,d , ....... I .... .,,a

1 lO lO0

Production Rate (cm" s")

Fig. 3. Volume emission rate profiles tor Ol 1356 a, for the reference

atmosphere shown in Figure I.

Figures 4a and 5a show the impact on the computed Ol 1356/k

and LBH surface brightness of the doubling of [N.,]. The 1356

intensity at 2 keV drops to 05% of the reference model, and then

rises back to 86% of the reference model by I0 keV. The 1 1356 is

reduced at all modeled energies due to the fact that there are now

more collisions with Nz. with a corresponding decrease in the

production of O emissions. The decrease is not a full factor of 2

because of the abundance of atomic oxygen at the higher altitudes.

For the ve_' lowest energies Ihighest a[titudesl, where {N,] is

much less than IO], the I 1356 should tend to an intensity level

unchanged from the standard case, as the emission is simply

raised in altitude. The modeled emissions do not include initial

energies less than 200 eV which would lose their energy above

400 kin. but the lowest energy emissions do show this trend. At

the higher energies, the emission is produced primarily at alti-

tudes where N_, is the major constituent and increased N_, does not

result in a significant change in the competition between O and

N',.

For the LBH 1464 A emission, doubling the N_, reduces the

relative concentration of the dominant absorber, O_,. Thus for the

higher energies which penetrate to greater depths, the emission

from the increased Nz overwhelms the O, absorption. Absorption

by O2 is not significant for the LBH 1838 A emission: there is thus

little dependence on the energy of the incident electrons.

Doubling the O_, density <Figures 4b and 5b) increases the

absorption of I 1356 and I 1464 at the higher energies dower

attitudes) resulting in reduced column brighmesses. The LBH

1838 A emission is relatively unaffected by O, absorption and is

influenced only by increased competition for collisions of the

energetic particles with 02 molecules. However. since [N,_]

remains the major specie relative to [Oz], I 1838 shows only small

changes.

The effect of doubling the [O] is shown for I 1356 in Figure 4,:

and for the LBH emissions in Figure 5c. For I 1356 the effect is

close to a factor of 2 increase in the emission at all energies, while

for the LBH emissions there is almost no effect at all energies. For

the very, low energies _not modeled) where O is the major con-

stituent, the effect of doubling the O is simply, to raise the altitude

of the 1356 +&emission. The trend to an unchanged emission can

be seen at the lower energies. For the LBH emissions, the effect

of doubting the O concentration is only seen at the very low

energies {high altitudes) where the competition with N, is further

increased. In the altitude regimes where N: is a larger component,

the O does not play a significant role.

From the results shown in Figures 4 and 5 it can be seen that

uncertainties of a factor of 2 in any of the principal neutral atmos-

pheric species translate into uncertainties of less than 20% for I

1838. The LBH 1464 A emission shows variations up to 70% for

factor of 2 uncertainties in [N-,] and less than 40% variation due to

other constituents. Ol 1356 is weakly sensitive to changes in O-,

and N,_., but varies almost in direct proportion to changes in O.

3.2. Sensitivity to Larger Compositional Chan,_es

The neutral atmosphere exhibits relatively large compositional

changes in the course of the seasonal, solar cyclic and magnetic

storm variations. In this section we report the results of our

assessment of the dependence on the computed emissions chosen

for this study to changes of this magnitude. In order to simulate

changes we have varied the input parameters tF_. 7, Ap, day of

year) to the MSIS-86 model atmosphere, yielding neutral atmos-

pheres at summer and winter solstice for conditions corresponding

to low, moderate, and high solar activity (Table 1). The relative
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Fig. 4. Ol 1356 dependence on (O1. [O:], and {N.,]. Each curve shows I 1356 for the doubled constituent case divided by [ 1356

trom the standard (unchanged) case.

compositional changes produced by these cases are illustrated in

Figure 6.

The variations m the emission ratio of Ol 1356 ,_, to LBH 1838

,_ due to such composition changes are illustrated in Figure 7.

This particular ratio is very sensitive to incident energy. For any

given atmospheric conditions, the ratio varies by a factor of 13

over the energy range shown in the figure. What is interesting to

note in Figure is that the variation due to the compositional

changes produced by solar activity variations (low. moderate, and

high F_0 7 cm flux) are small (_30%), while the variations result-

ing from compositional changes of the type produced by seasonal

variations are much larger (about a factor of 2). In Figure 8 we

,,how the energy dependence for these various composition cases

tor the individual [ 1356 and I 1838 intensities. The LBH intensity

is relatively insensitive to the changing atmospheric conditions,

while the OI 1356 is found to be primarily responsible for the

variations shown in Figure 7.

The reason for this can be seen in Figure 9 which shows the

ratio o( the individual concentration changes relative to the

standard case. Figure 9a shows that the atomic oxygen concentra-

tion (for altitudes below 300 kin, which correspond to the initial

energies modeled here) is significantly higher for the winter cases

than the summer cases.

Figure I0 shows the modeled volume emission rate altitude

profiles for the solar minimum and solar maximum summer eases.

As the atmosphere expands under the influence of increased solar

activity, the production rate for a given energy peaks at higher

altitudes. _" note is the fact that the behavior of the production

o
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Fig. 5. LBH dependence on {01, [02], and [N:]. Each curve shows the LBH intensity for the doubled constituent case divided by

the LBH intensity from the standard (unchanged) case.
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rate profiles for electron energies below 2 keV is markedly dif-

*00 ferent from that above 2 keV. The altitude at which this energy
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Fig. 6. Relative altitude density profile variations as a function of solar
activity and seasonal variation.

loss peaks is approximately 140 km. This is the altitude below

which 02 becomes a competitive constituent {see Figure 1).

Figure I I illustrates the effect of local 02 absorption. As would

be expected, for emissions lying outside the region of O2 absorp-

tion {LBH 1838), the production rates are unchanged by local O:,

absorption. For emissions within the Schumann-Runge absorption

continuum, however, the shape of the emission rate profiles is

changed significantly due to local O,,. absorption.

The final ratio modeled was LBH_o,#'LBH,,o, (Figure 12). The

ratio of LBH 1838 to LBH 1464 shows a dependence on the

incident electron energy that varies only slightly with solar

activity. As above, this variation can be explained by the relative

densities of N, and O,_. The observed variability from solar

minimum to solar maximum is due to changes in the O2 column

density and hence in the O2 absorption.

4, DISCUSSION

We have shown the intensity ratio OI 1356/LBH_o,s to be a

useful diagnostic for determining the characteristic energy of the

auroral particles using LBHto,i to be LBH 1838. The I 1356/

I 1838 ratio is a very sensitive indicator of characteristic energy,

changing by a factor of 13 or more over the range 200 eV to 10

keV, but this ratio can vary by up to factors of 2 with changes in

the neutral atmosphere. Almost all the change is due to variations

in I 1356. In addition, the I 1838/I 1464 ratio shown in Figure 12
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is found to be another potentially useful determinant of

characteristic energy. The N2 LBH long-to-short wavelength ratio

varies by about a factor of 3 between 0.2 and 10 keV but, unlike

the O1 1356 emission, is almost insensitive to changing atmos-

pheric composition. The longer wavelength LBH bands are also

useful indicators of the total energy influx, while the long-to-short

wavelength LBH intensity ratio provides information on the O2.

Other workers have also attempted to use optical emissions to

characterize the auroral electron precipitatio, -'or example,

Ishimoto er al. [19881 studied a similar ratio (OI I.,56/LBH 1928)

using a recent version of the Strickland model. Their modeled

emission ratio shows a sensitivity of 9 between I ana !0 keV, in

good agreement with our results. In their description of the auroral

code used in this study, Richards and Torr [1990] conduct a

comparison between the two-stream model used here and the
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more sophisticated multi-stream model of SJW and find good

agreement in the shape of the OI 1356 emission curve. (Dif-

ferences in magnitude are due to the use of revised Ol cross

sections in our model.) In addition to these studies, Rees and

Lurnmerzheim [1989] have suggested the N_ 3371/N,_ _ 4278 emis-

sion ratio as a determinant of the incident auroral energy. Their

results, however, disagree with calculations by SJW and with our

model, which shows the 3371 emission to be independent of

characteristic energy above 0.5 keV [Richards and Torr. 1990].

We have investigated the sensitivity of OI 1356 A. LBH 1464

A.'and LBH 1838 _, auroral emissions to changes in the neutral

atmosphere. Our studies show that O1 1356 varies linearly with

[O1 to within 20% and shows much less variation with other

atmospheric constituents. The LBH 1838 /_ intensity is relatively

insensitive to typical uncertainties in the neutral atmosphere (fac-

tor of 2 at auroral altitudesl. 1 1464 shows larger variations

because of its additional interaction with 02. Our results are in

good agreement with similar sensitivity studies perl-ormed by SJW
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who used a Jacchia model atmosphere [Jacchia, 1977] to model

OI 1356 dependence on [O't The dependence of these intensities

on much larger changes in _he composition such as might be

encountered over seasonal or solar cycle extremes has also been

investigated. It is found that the OI 1356 _, intensity is sensitive to

compositional changes whik 'ze N__ LBH long wavelength emis-

sion is relatively insensitix , such changes.

°,I
0.0

0.0
I I ! I
2 4 6 8 10

Energy (kev)

Fig. 12. Sensitivity of LBH,,,.¢/LBH,_,,,. ,:',;:nsity ratio to solar activity

and seasonal variation. The curves have the same interpretation as in
Figure 7.

Acknowledgmems. This work was supported by NASA contracts
NAS8-36955 and NAS8-37586, NASA grant NAGW-996. and NSF grant
ATM 8713693 to the University of Alabama in Huntsville, This work was
done while nne of the authors (GAG) held a National Research Cot:nell-

NASA Research Asso¢ialeship.
Fhe Edik_r thanks Manfred Rees and Donald Shemansky for their assist-

ance in evaluating this paper.

REFERENCES

Ajello..I M and D E Shemansky. A reexamination of important N,
cross r.ect.ms by electron impact with application to the dayglow: The
Lyman-Birge-Hopfield band system and NI ( 119.99 nm). J, Geophys.
Ret, 90. 9845. 1985

Hedin, A H.. MSIS-86 thermospheric model. J. Geophys, Res., 92,
4649. 1987.

Hudson. R r D., Critical review of ultraviolet photoabsorption cross
sections tot molecules of astrophysical and aeronomic interest. Rev.
Geophvs,, 9, 305. 1971.

lshimoto, M,, C-[. Meng. G. 1. Romick. and R. E. Huffman. Auroral

electron energy and flux from molecular nitrogen ultraviolet emissions
observed by the $3-4 satellite. J. Geophys. Res.. 93, 9854. 1988.

Jacchia, L G. Thermospheric temperature, density, and composition:
New models. Spec, Rep. 375. Smithsontan Astrophys. Observ.,
Cambridge. Mass., 1977.

Meier, R. R., D J Strickland. P D. Feldman, and E. P. Gentieu. The

ultraviolet dayglow. 1. Far UV emissions of N and N__,J. Geophys.
Res., 85, 2177, 1980.

Ogawa. S. and M Ogawa. Absorption cross sections of O..(at,.%_) and
O2(X_E_) in the region from 1087 to 1700 A, Can. J. Phys.. 53, 1845.
1975.

Rees. M. H,. and D. Luckey, Auroral electron energy derived from ratio
of spectroscopic emissions. I. Model computations, J. Geophys. Res,,
79, 5181. 1974.

Rees. M. H.. and D. Lummerzheim. Characteristics of auroral electron

preclpilation derived from optical spectroscopy. J. Geophy_. Res., 94,
6799. 1989.



GERMAN_ F.T M. AL RORAL EMISS|ON DEPENDENCE ON COMPOSITION
7733

Rl_.'l'ard,,. P G . ,and D G. TorT. Theorelical modeling ot the dependence

,,I _he N, ,c,:ond positive 3371 A auroral eml',,,lon on characterlsuc

energy. J G_'t;phvs. Refi.. In press. 19_)
Smckland. D J.and D E. Anderson. Jr. Radiation lra_port effects on

the O[ 1356 A limb intensity profile in the dayglow. J Geoph)'s Res..
,'¢,'¢. 9260. IC)83.

Smckland. D J . J R Jasperse. and J. A. Whalen. Dependence ol auroral
FUV em_s,,wms on Ihe incident electron spectrum and neutral atmo-

,phere. ]. Geophv¢. Res.. 88. 8051. I983.

Sx,.artz. W E . Optimization of energetic electron energy degradation

,:alculattons, J Geophy_, Res, 90. b587. 1985.
Ton-. M R . J C. G. Walker. and D. G, Tow, E_cape of fast oxygen from

the atmosphere dunng geomagnetic storms. J. Geophys. Re,*., 79.

)_67. 1974

G. A. German',' and M. R. Tort. Space Sciences Laboratory. NASA

Mar,,hatl Space Flight Center. Huntsville. AL 35812.
P G. Richards and D. G. Ton'. The University of Alabama in

Iluntsvillc. Huntsville. AL 35899.

(Received October _. 1989:

revised December 13. 1989:

accepted December 14. 1989.)

oF Poor QU jTy



_IECED_]G P_'SE BLA_.!K NOT Fit M_D

JOURNAL OF GEOPHYSICAL RESEARCH. VOL. 95. NO. Al2. PAGES 21.147-21.168. DECEMBER 1. 1990

Mid- and Low-Latitude Model of Thermospheric Emissions
1. O+(2P) 7320 A, and N-, (2P) 3371
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The capability has been desrel,.)bed Io model thermospheric airglow emissions on a semiglobal scale tL < 5).

This model produces w',lume emission rates as a lunction of altitude, latitude, longitude, and local time lot any

,elected date. and solar and magnetic conditions. The model can thus be used to provtde three-dimensional maps
ol the selected emission lot companson wHh data obtained from orbiting vehicles. As such it becomes an

essential tool in the plannmg and interpretalton ol airglow observations. A unique leature of the model is that it

incorporates lull intcrhemisphenc coupling by solving all the appropnate coupled equations along the magnette

Ilux tubes Irom the mesosphere in one hemisphere to Ihe mesosphere in Ihe other hemisphere. As a result the

cllects ot con)ugate photoelectrons (and heat Iluxest can be fully explored. In this paper we select two thermo-
spheric emissions w_th which to demonstrate the capability. The first is the 7320-,_ emission from the metastable

O°(2PL The second is the pertained emission at 3371 ,_ from the N: second postive 0.4) band. These two
emissions, for which the photochemistry ts relatively well understood, are used to show the seasonal, diurnal and

_,olar cyclic variattons on a scale that covers mid- and low-latitudes, and the elleers of interhemispheric coupling

{conjugate photoelectrons).

INTRODUCTION

Airglow emissions are important indicators of atmospheric

composmon and the mechanisms responsible for the production

and loss of the particular excited state from which thc airglow is

radiated. F()r example, the 0-4) band of the N_ second positivc

•,'.,,tern. x_hlch radiates at 3371 A. i,, excited in the airglow by

photoclcclrcm impact, and is lt),,t only bx radiation As a result.

Ibis enHsston _s an excellent indicator ot the photoelectron excita-

Hon rate IK_pp ez ¢tl.. 1977]. The O-(_P_ mctastablc state, which

radiates at 7320 A. is excited both by photoelectrons and by

extreme ultraviolet photons. However. because it is a long-lived

state, it is lost by quenching by O. N2. and electrons in addition to

radiation Thus at high altitudes. _here radiation is the dominant

toss mechanism, the 7320-,,_ emission can be used to infer either

the atomic oxygen concentration or the solar ultraviolet tlux if the

other is known IMeriwether et al.. 1978: Rusch el al.. 19761.

In the past. a number of detailed studies of these emissions have

been made using measurements of the surface brightness altitude

profiles obtained from orbiting spacecraft (see. lbr example.

Walker et al. ]1975] and Rusch et al. 119771). In this study we

have globally modeled these two emissions for a variety of

conditions.

The model wc have used here is one that we have steadily

developed ovcr the years. We solve the coupled time dependent

energy, momentum, continuity, and photoelectron transport

equations from 80 km in one hemisphere, along a field line to 80

km in the other hemisphere IFigure 1t [Young et al.. 1980tLb:

Cop._right 19_)t)h.x the American Gct)phy,lcal Union

Paper number 90J AO I111t)
lt14M-I)227 _JO9(IJA-III{)ItIS05.00

Richards and Torr. 1985a, 19881. The equations that are solved

are summarized below:

I. Ion continuity equation for major ions is given by

aN.___,: Q, _ L,N, - V. ,b, ( I )
at

where N, is the concentration of the ith major ion. Q, and L, are its

production and loss frequency, respectively, and d), is the ion flux

defined below. The electron density is assumed to be equal to the

sum of the ion densities.

2. Momentum equation is given by

where

U, =

_, = N,U, (2)

/' % _U,-D,/'LVN, -'''G +&rr,+ rdr,,, rN,
\E(v)] \N, kr, ,7", .. ," .

+JLvT, + N, {a"rT,-a'FVT,_+ (_)V.
r, • s,+s,\r, T, //

(3)

where U,, is the neutral wind velocity and where the subscripts i

and j are applied first to O + and H ÷ respectively, and then

to d--I" and He* respectively. O', H", and He" are coupled

through collisions and the polarization electric fields. Since the

influence of O + and He* on H* becomes significant in dif-

ferent altitude regimes and since the effect of He * and O" is small

due to their mass ratio, this decoupling of a system of three major

ions into 2 pairs of major ions considerably simplifies the numer-

ical calculation of the major ion densities. Here 04.i and aq* are

thermal diffusion coefficients and D, is the ordinary ion diffusion

coefficient of species i, as in the work by St. Maurice and Schunk

119771.
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3. The thermal clcctron energy equation is and

_ 3 N,.kU,.. VT,. - V.q,. + EQ,.- EL,,3 N,k a___T= _ N,.kT, V'U,
-_ at _ (4)

4. The ion energy equation is

3 N,k ;iT, -N,kT, V.U, 3 N,kU/VT__.q,+.¢Q__L,
_ _--7= -_

(5)

5. The ion heat flow equation is

= I Q'-h,VT, N"n'v"'hjVTj) (6)q, -_ NpIjV 1

6. The electron heat flow equation is

q, = - X,.VT, (7)

The thermal conductivity coefficients h., and k,.. and the term

= v,/v//(v,'%')

where vj,'. v,/. v,', and vj' are the effective collision frequencies,

are given by St. Maurice and Schtmk 119771. The ion-neutral

collision frequencies v,,, are from Schunk aml Nagy 119801.

7. The photoelectron Liouville cquation is given by

q
B d ,'D ÷_ -T_,C* +T_-+ q + (8)

ds B 2<cos 0> <cos 0>'

d *- =_T,__b_+ T_qb, + q -t- q- (9)
-Bds B 2<cos 0> <cos O>

where

d_* (E.s)

_b-tE.s)

q(E.sJ

q4-

<cos _>
B

T I =

T 2

photoelectron flux outward along s;

photoelectron flux inward along s:

photoelectron production rate in the range E to

E + dE due to direct ionization processes:

photoelectron production in the range E to E+dE

due to cascading from higher energy photoelectrons

undergoing inelastic collisions;

average cosine of pitch angle;

magnetic field strength;

w ntp,._o- };
k

X rider,) +p,_tr,3];
k

N.G &'_

Fig I. Illustration of the interhemispheric nature of the code in which the

coupled and time dependent equations are solved from 80 km in one hemi-
sphere, along a field line. to 80 km in the conjugate hemisphere.

nt Lth species number density:

p,) photoelectron backscattcr probability tor elastic con-

ditions v, ith the £th species

tr,) photoelcctron total _,cattenng cross section for elastic

ctmditions v, ith the kth species:

o-,,t inelastic cross section for excitation of the kth part-

icle species.

The model includes an option to increase the O*--O collision

frequency as recommended by Burnside t,t al. [1987]. The use of

the Schunk and Nagy 119801 values here does not significantly

influence the results of this paper.

The above formulation corresponds to conditions where the dif-

ferences between species temperatures and flow velocities are

assumed to be small, i.e.. stress and nonlinear acceleration terms

are neglected. In addition, density and temperature gradients

normal to the geomagnetic field lines are neglected and we

assume that the electron and ion temperature distributions are

isotropic.

The continuity equation is solved using a rather unique

approach. We can rewrite I I ) in terms of a /unction F:

dE = ,)N, + V. (N,U,)-Q,+L,N, (10)
at

Then, using a Newton iterative procedure to find the minimum of

F, we solve for the density at the grid point, j. Figure 2 shows

how the field line is divided into elements about the actual grid

point j. The lower limit of the element (it) is placed midway

between the grid points j and j- I, and the upper lirmt (u) is pla-

ced midway between j and) + I. The lower limit of one clement is

the upper limit of the preceding element. We then integrate (10)

between u and _, and obtain the densities by solving

F= f_\at /

where B is the amplitude of the magnetic field. The values of aNl

at, Q, and L arc obtained at the limits of integration, u attd l. by

interpolation between the actual grid D_ints.

In the past. many models ha,,e encountered numerical problems

above about 3000 kin. due to the largc diffusion coefficient in this

region v, hich results in small density changes producing large

changes in velocity. At lower altitudes, both ion-ion and ion-

neutral collisions arc important, v.hile at greater altitudes, colli-

sions become less important and the plasma can be accurately

Fig. 2. The numerical grid scheme used for the solution of the continuity
equation.
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described using a diffusive equilibrium approach. The solution of

(I I) distinguishes this model from previous methods which eval-

uate the terms of the integral at only one point. As can be seen

lrom I t I ) and Figure 2. the flux at the upper limit of one element

becomes the flux at the lower limit of the next element. These

lluxes must be identical and hence this method has been called the

'flux preserving scheme." Furthermore. the flux at any grid point

is closely tied to the flux at neighboring grid point..,, allowing

",table solutions even for regions where large changes would give

rise to unstable solutions with other numerical methods.

The model star_s at noon with "best guess" initial values. It is

allowed to run for 12 hours (in local timel before results are used

in order to reduce dependence on initial conditions. It has been

found that the ionospheric densities over a midnight to midnight

diurnal cycle typically repeat with only small differences due. for

example, to plasmaspheric refilling. The plasmaspherie H" and

He" contents are initially low. and the flux tubes are allowed to fill

continuously. The transport equations tot the three major ions.

He'. H +. and O', are carried out in two steps, ,As

mentioned above, the coupled O" and H ÷ equations are solved

first, t\_llowed by the He- and H- equations. ,._,here the latter

use the O--H * results. Thus the equations for the three major

ares are es,.entiallv solved in a simultaneous manner Below

approximately 180 kin. NO + and 03" become major ions. but

are obtained from photochemical equilibrium calculations.

The numerical solution of these equations, boundary conditions

and other details are further discussed bv }'otm_ ('tal. IIg80a.h].

The full interhemispheric coupling is difficult to handle, but

trace incorporated it imposes no artificial upper boundary con-

ditions for both thermal and photoelectron fluxes. This is most

important for thermal coupling and the proper treatment of con-

iugatc photoelectrons [Richards and rorr. 198561 which can be

•,tgnificant in the calculation of airglow emissions. Typically.

attenuation of the conjugate photoelectron fluxbv Coulomb colli-

,,ictus re',uhs in approximately 5'5} energy loss The model

includes the option to specify loss due to pitch angle scattering

,._.hich ,.,.e assumed to be zero tot this paper. -k tilted dipole

approxmlanon is used li_r Ihe Earths mao_netic field [Ri(hards

rout Tom. 1986a1.

The concentrattons of the major neutral species arc provided by

the MSIS-86 [Hedm. 19871 to the model which then computes the

concentrations of minor and excited slate species and major ions

ITorr. 1985: Richards ('t al.. 1982a, 198661. In this paper a

,,imple model giving daytime poleward winds and equatorward

neutral winds was employed. This behavior is consistent with the

results obtained using the method of Richards (rod Torr 11986b]

and Miller etal. [19861. The model includes the option to use

model u, inds of Hedin et al. [19881. Killeen etal. [1987] and

Killeen iprivate communication 1989). Note. if the Hedm et al.

I 1988] model is used. the O + _) collision frequency of Burnside et

,/. [ 1987] should be used in order to produce the observed h,,F2 at

night.

The chemistry, of all significant emitting species is incorporated

in detail, including the excitation of the metastable states [M. R.

Torr and Torr. 1982] and vibrational states IRichards etal..

1986a: Richards and Tort. 1986c]. and the odd nitrogen

chemistry [Richards etal.. 1981. 1982b: Richards. 19861. The

vibrational population distributions of N, are determined, an

important factor in calculating the ionospheric O + and N.,

concentrations. The model also includes calculation of the vibra-

tional populations of N: ÷. but this does not significantly affect the

results reported here. The photochemistry, is that described by

Torr [19851 as updated and shown here in Table I and illustrated

in Figure 3. At equatorial latitudes, where electric fields play an

important role, the electron concentrations are obtained from the

fully analytical ionospheric model of Anderson etal. [1989].

Elsewhere. the electron densities are computed self-consistently

by this model. The transition occurs between L -- 1.5 and 1.8

with interpolation between these L shells. The major elements of

the code are shown in Figures 4(+ and 4h. The solar EUV flux is

obtained in the following way. For solar minimum tFI0.7 = 711

the model utilizes the F74113 reference spectrum from Tort etal.

[1979], with the fluxes below 250 A doubled as recommended by

Richards amt rorr 11984[ and supported by Ogawa and Judge

11986]. For other levels of solar activity, each of the 37

wavelength intervals is scaled linearly as a function of FI0.7

using the solar maximum measured flux at FI0.7 = 206 given by

Torr and Torr [ 19851. For further details, see Richards and Torr

119881. ,,shich also provides the cross sections used.

The main outputs of the model include ion densities (O +,

O*(_S). O'(2D). O'(2P). H'. He'. N +. NO". N:*,

N.,+*). neutral densities (N(4S). N(-'D). N(:P). NO. O(tD),

OtiS). N_,IA_,,). N_,*), electron and ion temperatures and

flow velocities, the photoelectron flux. and a large number of

emissions (see Figure 4a}.

During the Atmosphere Explorer C. D. and E program.

numerous studies were conducted which compared the photo-

chemistry of the code with in situ measurements of species con-

centrations. The photochemistry yields results consistent with the

data base taken over the lifetime of the AE satellites. Generally.

,,cry good agreement with measurements has been obtained with

regard to all parameters with the exception of high altitude

electron temperatures in the plasmasphere and ionosphere [New-

bern" eral.. 1989]. The model has been extensively tested against

comprehensive satellite and incoherent scatter radar data bases

[Young etal., 1980a,b: Chamller eral., 1983: Richards and

Torr. 1988: .Vc,'l_errv er al.. 1989: Horu'tt- or al.. 1990: Richards

¢,t al.. 1989] Apart from the input parameters (such as data and

h_cationl the only free parameter in the code is the pitch angle

wattermg of photoelectrons in the plasmasphere. In its present

lotto, the mc,del is ideally ,,uited for ,,tudtes o[ the airglow

emissions.

The code is run on the Marshall Space Flight Center CRAY

XMP computer. Values of output parameters are provided on a

global grid of points, providing results in a latitude, longitude.
altitude, and It,col time mesh lbr an'.,' selected date. or solar or

magnetic conditions. For the cases discussed in this paper, we

have run the model fc,r 144 flux tubes, which corresponds to 144

northern and 144 southern hcmisphere locations. Figure 5 shows

the locations of the field lines along v, hich the equations are

solved. These arc constrained to L <_ 5.

We have chosen the O-(2PI emission at 7320 ,._ and the N-,

,econd positive (Y-O band emission at 3371 A for the initial global

modeling. The calculations havc been made for November 28.

1983 for which the FI0.7 cm flux ',.,,,as 89. and the Ap index was

23. Thus the November 1983 calculations correspond to a period

of relatively low solar activity. An earlier example of the results

for the 7320 A case has been shown by Tort et al. 11990]. The

results shown here rcpresent a significant improvement over the

Torr etal. 119901 case. in that we have added approximately 50

more flux tubes at low latitudes (144 versus 96). In addition we

have used much smaller time steps through the twilight conditions

(5 minutes versus 20 minutes). For comparison, we have also run

the calculations for the same day of year. but for conditions
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TABLE 1. Summary of Photochemistry Used in the lnterhemlsphenc Model

Reaction Rate Coefficient (cm _ s -+)

Number Reaction or Rate (s-') Reference

1. 0 + + e-+O + hv _4x 10 -42 (Tr'300) °7

2. O, + + e-_O + 0 1.6×lO-7(300/T,)°_'_forT_>_ 1200K

2x 10-7 (300/T,) ''_ for T_ < 1200 K

3. O* ÷ O_,-+O,. + + O 2.1x10 -+' {T,,+2T,/3x300} "°_6_

4. O + + N2+NO ÷ + N 1.533x10 -'2 - 5.92xl0 -+_(T_4300)

+ 8.60x 10-'+ (T,,v:300) "

ORICqNAL PAGE IS for 300 _< r_, _< 1700 K

OF POOR Q_..I/_,I.J3'Y 2.73x I0-" - 1.155x I0-';(T+./300)

_ + 1.483x I0-+_ (T_d300) 2

for 1700 < T,. < 6000 K

5. NO* + e+N + O 4.3x IO-7 (T,./300) -_

6. N, + + O+NO ÷ + N 1.4x10"'°(T/300)-_ forT, < 1500K

7. N_, + + e-+N + N 2.7x10 -7

8. N, + + 0+0 + + N, O.07k_,(T/300) °a*

9. N, + + O_,+O,. + + N_, 9.1x10-" exp(-0.002Tc,,)

10. N* + O__-+O_,* + N 4x 10-'°

II. N" + O,_+NO + _- O 2x10 -'°

f2. N" + O__+NO* + O('D) 13 = 0.7

13. O_,+ + N+NO" + O 1.2x10 -m

14. O., + + NO-)-NO + ÷ O, 4.4x 10-'°

15. O*(2D) + Nz+N__* + O 8x10 -+°

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

O*(2D) + O+O'(+S) + O

O*(2D) + O.-)-O_. + + O

O+(2D) + e-+O+(+S) + e-

O'(2P)-+O÷("D) + hv

O'(2P)+O+("S) + hv

O+(2P) + e-+O'(ZD) + e-

O'(2P) + e-+O'(2D) + e-

O+(ZP) + N_, +products

O+(2P) ÷ O+products

He + hv-+He + _- e-

He* + N_,+N + + N + He

He + + N:-._N, + + He

O + + H-+-H + +O

H+ +O+O+ +H

O + + N(_D)+N ° + O

NO* + e-+N(ZD) + O

N,_" + e-+N(2D) + N

N:" + O+N(:D) + NO*

N" + O:+N(2D) + 02 +

N(2D) + O+N(+S) + O

NQD) + O:+NO + O

NQD) + e---_N('_53 + e-

N(2D) ÷ O_,'_ NO" + O

N('S) _- O_+NO + O

N + NO+N, + O

0,_ + hv+O('D) + 0

0,_ + + e-+O(tD) + 0

OQD) + N:-).OQP) + N;

O('D) + O:+OQP) + O.,

O('D)+O(3P) + hv

NQD) + Oz+O('D) + NO

O, + + e-+O('S) + 0

O, + + N.,_O('53 + NO +

O('S) + O(+P)+O + 0

O('D) + O+O + O

5 × 10 -'2

7 x 10-'°

6.6x 10.4 (300/7",) _

0.173 s-'

0.047 s-'

1.5 x 10-T (300/7",) _

4.7x 104 - (300IT,) _

4.8 x 10-'°

5.2x I0-"

4.0x 10-a I 2x 1071c)

txl0 -_

6.5 x I0 -'°

2.2x I0-" - !7",) "_

2.5x I0-" • IT,) _

5 x I0-"

[3 ' k_ where [3 = 0.76

[3 "k_where[3 = 1.9

[3 • _ where [3 = IO

[3"k,owhere [3 = 1.0

-7 x I0-'_

6x 10-.2

5 x I0 -'° (Td300) 5

I x I0"-'-

4.4x I0 -+" exp (- 3220173

3.4x I0 -'4

13 = l;J:_(O_,)s_ = (1.5-2.8)xI0 _

i_ kz where I_ = I. 2

2.0x 10-" exp 1107.8 7",,)

2.9x 10-" exp 167.5/T,,)

0.00934

-5 x 10-'z

13 k, where [3 = 0.08

42 x 10-"

2 x 10 -'+

8 x Ifr _2

Torr { 1985]

Torr and Torr [ 1981 );

Mehr and Biondi [ 19691

Chen et al. {1978]"

St. Maurice and Torr {1978];

Albritto, 11978];

Che, et al. 11978]

Torr and Torr[ 1979]

McFarland et al. [ 1974]: Torr[ 1979]

Abdou et al. [ 1984]

McFarland et al. [ 1974]

Lindinger et al. [ t 974]

Huntress and Anicich 11976]

Huntress and Anicich [1976]

Langford et at. 119851

Fehsenfeld 11977]

Lindinger et al. [ 1974]

Rowe et al. [ 1980]:

Johnsen and Biondi {1980]

Abdou et al. [ 1984]

Johnse, and Biondi 119801

Henry et al. 11969]

Seato, and Osterbrock [ 1957]

Seaton and Osterbrock (1957]

Henry et al. [19691

Henry et al. [1969]

Rusch et al. 119771

Rusch et al. [ 1977]

Tort and Tort [ 1985]

Adams and Smith { 1976]

Adams and Smith [ 19761

derived from Banks and Kockarts [ 1973]

derived from Banks and Kockarts [ 1973]

Tort et al. [ 1979]

Klev et al. [ 1977]

Queffetec et al. [1985]

Frederick and Rusch [ 1977]

assumed

Richards er al. [ 1981 ]

Lin and Kaufman I 1971 ]

Frederick and Rusch [ 1977]

Dalgarno [ 1970]

Becker et al. [ 19691

Lee et al. [ 1978]

Torrer al. [19801

Abreu et al. [ 1986]

Streit et al. [ 19761

Streit et at. [ 19761

Fischer and Saha 119831

Rusch et aLI 19781: D. G. Torr et al. [ 1981 ]

Bates and Zipf [ 1981 ]; Abreu et al. [ 1986]

Frederick et al. [ 1976]

Slanger and Black [ 1981 ]

Abreu et al. [1986]



TORR ET AL MID- AND L_)W.LATITUDE THERMOSPHERIC EMISSIONS

TABLE 1. (cominued)

21,151

Reaction Rate Coefficient Icm > s-')

Number Reaction or Rate (s-') Reference

5I, O(*S)_O()D ÷ hv 1.07 Kernahan and Pang [1975]

_OQP) + hv 0.0444

52. N("D) + NO_Nz + O 7×10 -*l LinandKaufman[[971]

53. Of'S) + O.,--_O('P) + O, 4.9× 10 -'2 exp I-1730/RTI Zipf[1979]

54. Nz(A3X',7) t O -+ products 2:< 10-" Piper [[982)

55. N_,(ASE,)) _- O-*-O(*S) + N_, [3" ks, where [3 = 0.37 Piper [1982]

56. N_, ÷* + O_O+ + N, _2×10 -_" Abdoueral. [1984]; Torr [1985]

57. N, + hv-+N* + N + e (I.78 - 5.14)×10 -'_ TorrandTorr]1985]'

--)-N_," ÷e (3.06 - 8.82) xl0 r

58. 0 + hv--_.O*(4S) + e (0.98 - 2.81)×10 -7 TorrandTorr[1985)'

+O*(2D) + e (0.79 - 2.34)x 10-7

..¢.0*(2p) 4- e (0.45 - 1.38) x I0 -7

--_O*(4P) 4- e (I.04 - 3.43) x 10_

-_O*(2W) + e (0,46 - 1,42)x10 _

"Since the results of Chen et al. [ 1978] stop at 700°K, we normalize the converted dni"t tube data parametenzed by St. Maurice and Tort [ 1978] at this

(emperature.
"The model computes this rate coefficient as a function of N,. + vibrational temperature IT, ). The value reduces to that given by equation (6) when T, = T,.

Inclusion of this process is an option available [see Abdou et al.. 1984].

'The ranges gwen for the ionization frequencies indicate the variation over a solar cycle.

0

|2

hv e

e

k high

N,NO e

3Z N,NO

0 2

NJ2

N

Fig. 3. Schematic of the thermospheric and ionospheric chemistry that is incorporated in the model.
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corresponding to solar maximumIFl().7 = 194. Ap = 23).This

,tudv deals only with the airglow, and we do not show results for

latitudes higher than L = 5.

Details of the results are given m the following section.

MODELING OF THE 7320-,._ AIRGt.O',V Exltsstox

The 7320-A emission arises from the O+(2P! state, u, hich is

produced in the thermosphere by two mechanisms: photoioniza-

tmn and photoelectron ionization:

O + /iv-_O+12P) * e

0 + e*--:,-O'(-'P) + 2e

where the photoelectrons may be those produced locally+ or those

produced in the conjugate hemisphere and transported along th,:

magnetic field lines. The O+(zP) is lost by several mechanisms:

- ldialion

O+("P)-* O+ I_S) + ItvT_:o ._

,.ollisional deactivation

O'(2P) + N,..-_N 2- * O

O'(2P) + 0 .-*-0" _- 0

O'(:P) + e _-O'l?D) + e

O*(ZP) + e'+O'(4S) + e

This photochenustry has been reviewed by T,wr amt Tmr { 1982].

It should be noted thai since publication of the aeronomically

derived values of the rate coefficients by Rusch et al. [1977]. the

solar EUV flux below _250 ,& was doubled. We estimate that

when quenching dominates, the reported intensities may be about

30Cl, - too high.

Plate I shows the 7320-A _,olume emission rate at the peak of

the laver as a function of latitude, local time Ilongitude) and ahi-

lude. The upper plot shows the peak volume emission rate as a

function {_t latitude and local time. Because the model has long-

itudinal '.armbility resulting from both the MSIS IHedin 1987]

model atmosphere, and the interhemispheric coupling, this par-

ticular plot is shown for (X) UT. This UT is equivalent to plaemg

midnight at 0 ° longitude, the Greenwich meridian, and noon at

180 ° longitude, i.e. over the Pacinc Ocean. Where the volume

emission rate becomes so small as to be effectively zero. the

values are not plotted. These regions can be seen near midnight

for equatorial latitudes, and represent no production at these

times. The graphics tend to smear the northern and southern lan-

rode boundaries by a few degrees to the north and south, respec-

tivelv. The solutions are only valid, however, w_thin the L _ 5

region illu,trated in Figure 5.

The ba :,: fi:atures shown in Plat,.' 1 have been di_,.ussed by

Tm'r et al. ll990l but we ,aWl review them here briefly as this

plate will be used for the comparison with other cases. Summer is

0_C'!?;.*%- PAGE IS

INPUTS

(a)

CONCENTRATIONS

ELECTRON
CONCENTRATIONS

RATES

AND AIRGLOW

MODEL CONSTITUENT
OUTPUTS CONC ENTRATIONS

PHOTOELECTRON FLOW
FLUXES VELOCITIES ECTRON AND ION

TEMPERATURES

Fig. 4(a J: Schematic illustration ol the major input and output elements of the field line interhemispherie plasma t FLIP) code. (hi
lllustranon o[ the llov, ol the solutions.
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Fig, 4. (continued)
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Fig. 6. (continued)

An interesting feature of Plate 1 is the fact that there is signifi-

cant production (=0.2 cm -_ s-_) at high altitudes at midnight in

the winter hemisphere. This is due entirely to photoelectrons

transported from the summer hemisphere. This conjugate electron

production rate together with the loss processes are shown in

Figure 8. Without the interhemispheric capability this production

source would not be modeled.

Because or" the longitudinul asymmetries of the Earth's mag-

netic field, the conjugate photoelectron production rate varies for

different maps generated tor different universal times. Plate 3



Plale 3, The 7320-A volume emission ratelphotonscn'F "_s-_)atthe peakol-lhe layeras a functionofallitude, latitude, and local time

Ior 06 UT The volume emission rate is on a log scale. The missing areas near the equator at midnighl are where the emission rate has

,..'IIccIi',,'CI_ _onc IO zero.
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Fig. 7. Production and Io_s rates for 54°S for a solar zenith angle of 105 ° (LT = ()0).

_,hows the global plot for the same conditions as Plate I. but for

UT = 0600. This is equivalent to placing midnight at 90°W. over

the eastern United States. In this longitudinal sector, higher

,,outhem latitudes (solar illuminated) map to lower northern lati-

tudes. Above 50°S thc Sun does not set and conjugate electrons

are present all through the night near 50°N. Thus the conjugate
source is seen to be significantly more pronounced than for 00

UT. Plate 4 _,hows the integrated volume emission rate. or surface

brightness lin raylcighsL v, ith and without the conjugate photo-

electron source. Thc scale has bccn adjusted t, nhance the winter
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Plate 5. The 7320-A '.,olume ernisston rate tphoton,, cm -_ ..,-__at the peak of the layer as a function ol altitude, latitude, and lc,cat ttme
Ior O0 LIT The results are Ior the same dav a_,Plale I IN,,:,vember 28 )but h:,rsolar maximum ¢ondilion_,. The vc,lume emission rate is
,ho_._.nc,n a log scale

m,__'httime conjugate production. This intcrhemtspheric source

rc,,ults in 2 to 3 R of 7320-A airglow.

Plate 5 _hows the same day of year as Plate I. but for conditions

representing solar maximum. The principal differences between

these tv.o are in the overall increase in emission rate and the

_,.erall increase in altitude of the emission peak. Both of these

ctfccts arc to be expected on the basis c,f the solar flux and neutral

atmosphere changcs.

Plate 6 \hows the results of integrating the volume emission

rztte s, ot lhe solar minimum and maximum cases IPlates I and 51

over altitude to obtain lhe vertical surface brightness. These

intensities lin rayleighs) are w_hat an orbiting im, trumenl _.,.ould

',co lonkinL_, vertically downward on the atmosphere.

X|ODELING OF THE N, 3371-A :klRGI_O\V

The production mechanism for the excitation of the N: '_ec0nd

posm,.c s',stem in the dayglow is photoelectron impact:

N-tXI',," ) -" (':_ "-')" N2tC;TL, I - ,r

The 3371--k cm_ssi,3n arises from the/)-a_ band of the '_econd posi-
U\C ss ,,tcnl:

N'_iC_,,; -,-N:CT_"_. J - In'

Since the transition is permitted, radiation is the only loss process.

The excitation cross sections for the 0-0 band are those of Imumi

,z_d Bor_,' [19741 which are 25% (:,f the total cross section.

Plate 7 shows the results of the semiglobal solution of the 3371-

.-k volume emission rates. The production rates for noon at mid-

latitudes are shown in Figure 9 The results shown in Plate 7

follow the behavior anticipated from a simple photoelectron

source and radiative loss. The behavior changes after sunset in

that the peak production rises in altitude and falls in magnitude.

Again. the high latitude conjugate photoelectron source can be

_cen during the night in the ,.,,inter hemisphere. While _e do not

,,how the 06 UT case here. the conjugate source again becomes

more pronounced for the different magnetic field orientation, as it

did for the 7320-,_ case. because of the more favorable alignment

of the magnetic field lines for this purpose.

Plate 8 shows the global model of the peak 3371-,._ volume

emission rate for solar maximum. What is interesting to note in

this case is that. apart from an overall increase in the altitude of

the emission peak. the peak emission rate distribution is very.
similar at solar maximum and solar minimum. However. the dif-

ference in the vertical intcnslty is significant. This is seen in Plate

9 which shows the integrated column surface brightness for solar

minimum and maximum. The difference b, largely due to the dif-

fering scale hcights, as can be seen in Figure 9.
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Plate 6a. Solar minimum ea_e _hown in Plate I.

Plate 6b. Solar maximum ca_e shown in Plate 5.

PIate 6. Vertical column integrated surlace brightness tin rayleighsl. The results are only valid within the L _ 5 boundaries shown m
Fieure 5
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Plale 7 \_lume emission rate (ph(_t,:',n,,cm-' ".,-_)a! lhc peak ofthe 3371-A la._cr'.,cr,,u,, ail1(ud¢. [a(Hudc. and local llr'ne (h',ngHudel

!or near ,,c,iar mlnlmLlm ¢()ndlllon_ The. ,.'oJumc eml,.,..,lon rate i_ ph_lled ,.m a Io_ ,,tale The re,,uh-, arc _ml', _._did v, Hhln the L _._

houndurlc _,".,h_v,n in Fl_urc 5

SUMM_,RY

In thi,, paper ,._.e have presented the tir',,l interhemisphcrically

coupled models of the O-(-'P) and N q_C} airglow emission at

7320 A and 3371 A. re_,pecti',el_, covenng mid and low latitudes.

These arc I,._.o cnns,qons for which the mechanisms are refati',elv

_.cll under,toe, d. allowing u_, to examine here the mc)m_m_iogv.

The ,,crm,.:lobal graphical maps clearly illustrate the dmmal.

,casonal and ,,olaf c_,clic variability of these en'ussions [n both

ca,,cs. C_mlUgate phc, tc, ctcctrons result in excitation at mid t, TM qigh

nighttime I:llilude3 in the ,.,,inter hemisphere. The in_ qli-

,pheric c_upling capabilil.', of the model allows u', to he

extent and Ihe hm,.2Hudinal xanabilit,, ol the conlUgale pholoelec-

Iron effects.

This ," i)del pro,.idcs a capabilit,. ,.,.hich _ilI greatly enhance the

ability t_, mterprel a_r,.:lo,.,, ,,b,,er,,atums made from spacecraft.

_knv line of ,,ighl gcometr), can nmv be proiccted through the

Ihrec-dimcnsional model ,,c, tution, and bx integrating along the

projected line of ,,ight. ,,urtace brightness (',ertical Mr slant path)

can bc obtained for comparisnn with the obser,.ations. Further-

more, because t_f the complex xarlabilily exhibited by these

emissions over the L <- 5 range, this model al:.,o provides a

,.aluable tool for planning of ,,uch c,b,,ervations.

Plait 9 \crlical inlcn,.il.,, ,.',I Ihe 3371-A airglow Iin rayleighs) t_t'Jrsolar minimum and ,,olar maximum cc, ndillon,, The _,olar

nlaxlmunl plc, I is ,,hown on I'.a,,(')',tales: one m ,,how Ihe inlenslty vananon and one Io alloy, comparison w_th lh¢ solar minimum plot
,h,,','.._.n m Plate _rt The re',,ults arc ,,mlv valid wilhin lhe " <- 5 boundaries, _,ho_n in Fieure 5.
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Plate 8, Volume emission rate (photons cm-" s-r) at the peak of the 3371-A layer for solar maximum conditions. The volume

¢ll11_._,lon rate iN plotted on a log scale.
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Plate 9h Solar maximum, scaled to bnghics! intcnsi|ie_,

Pl;tlc 9c S_Jlar maximum, same scale as solar minimum,
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A MIDLATITUDE [NTERHEMISPHERIC MODEL OF THE O-(-'P) AIRGLOW EMISSION AT 7320

Marsha R. TorT

Space Science Laboratory., Marshall Space Fight Center. Huntsville. ,Alabama

D. G. Tort and P. G. Richards

Center for Space Plasma and Aeronomy. The University of Alabama tn Huntsville

Abstract. The results are reported of the first interhemispheric

model of the 7320 A airglow covering mid- and low latitudes, at all

longitudes. A comprehensive model of the ionosphere and thermo-

sphere is used to compute volume emission rates as a function of

altitude, latitude, longitude, and local time. Selected results are

shown here to illustrate the computational capability. In particular

we discuss the diurnal and seasonal variability and interhemispheric

coupling of conjugate photoelectrons. The model is particularly well

suited for airglow studies, and provides a valuable tool for the

comparison, interpretation, and planning of spectroscopic observa-

tions made from orbiting platforms for all significant thermospheric
emissions.

Introduction

The O" (-_P) airglow emission at 7320 _, provides a means of deter-

mining the O ÷ (-'P) concentration. Measurements of this emission can

be used to determine the atomic oxygen concentration or the solar

UV ionization frequency [Meriwether et al., 1978; Rusch et al.,

1976]. The photochemistry of this species has been established

largely on the basis of the comparison of steady-state altitude profile

calculations with surface brightness measurements made from satel-

lites [Walker et al., 1975; Rusch et al.. 1977]. Observations of limb

bnghmess are inverted to yield altitude profiles of volume emission

rates. The principal sources and sinks ofO ÷ ("P) have been discussed

in detail by Tort and Ton. [1982].

Over the years, we have developed a comprehensive model of the

ionosphere, thermosphere, and plasmasphere, This model solves the

coupled time-dependent energy, momentum, continuity, and photo-

electron transport equations from 80 km in one hemisphere, along

the field line, to 80 km in the conjugate hemisphere [Young et al..

1980]. The full interhemispheric capability allows for the proper

treatment of thermal coupling [Richards and TorT, 1986] and con-

jugate photoelectrons [Richards and TorT, 1985], which is important

in the calculation of airglow emissions. The concentrations of the

major neutral species are provided as input from MSIS-86 [Hedin,

1987] to the model which then provides the minor and excited state

species and ions [TorT, 1985], The chemistry of all the emitting

species is comprehensively included [Ton'. 1985]. Ab initio calcu-

lations of the excitation and loss rates are performed for the metas-

table species [Tort and TorT, 19821 and the vibrational states of

molecules and ions [Richards et al., 1986]. The concentrations of

odd nitrogen species are also computed together with those of other

minor constituents [Ton" et al., 1980]. The photochemistry currently

used in the model is that defined by Tort [1985] (Tables A-8 through

A-12 and A-t9 through A-21) with the updates, corrections, and
additions summarized in Table I.

The three-dimensional capability is achieved by running the code

for approximately 100 magnetic flux tubes. Because the model is

interhemispheric, solutions are obtained simultaneously for the con-

iugate hemisphere. This yields a total of approximately 200 grid

points. The flux tubes are selected along various L-shells for L _< 5

and the grid on which the code is run is shown in F/igure I in geo-

Copyright 1990 by .%nerican Geophysical Union.

Paper number 89GL03360.

0094-8276/90/89GL-03360503.00

graphic space. Because of the large computational requirements, the
MSFC CRAY II computer is used. Results are output on a four-

dimensional global grid. comprising latitude, longitude, altitude.

and local time. Input parameters are date and solar and magnetic

indices.
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Fig. I. Location of the conjugate points along L = IO8 to L = 5
which mark the field lines along which the computations were made.

In this paper we have selected the 7320 _, emission to illustrate the

global airglow modeling capability. The calculations have been
made for conditions corresponding to November 28, 1983. for which

the FI0.7 cm flux was 89 and the Ap index was 23. Thus these calcu-

lations correspond to a period of relatively low solar activity.

Results

Figure 2 shows the results of the global solution of the 7320/_

emission. The volume emission rate at the peak of the layer is plotted

as a function of altitude, latitude, and local time I Iongitude). This

particular plot is shown for Of) UT. which is equivalent to placing

midnight at 0 ° longitude, and noon at 180 ° longitude.

Several interesting features appear in the results shown in Figure

2. Summer is in the southern hemisphere and the more extensive

solar illumination in this hemisphere is immediately evident in the

longer duration of the daytime peak values (volume emission rates of

the order of 10 photons'cm3's t ). The model results are valid for the

latitudinal regime indicated by the envelope of the points shown in

Figure I. The interpolation routine tends to smear the high latitude

boundary in Figure 2 by about 3". Figure 3 shows the production and

loss rate profiles for noon at southern midlatitudes. The peak produc-

tion of O *(-'P) occurs near 170 km with photoionization the major

source. The dominant loss mechanism above 280 km is radiation,

and below 280 km it is collisional deactivation by N_,. The combina-

tion of these processes results in the emission peak being formed at

approximately 260 km.
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TABLE I Updates m Photochemica! Model of Ton ( 19851

Reaction Rate Coelficient fcm _ s_: , c,r sLI Reference

I) O - ()-..-,.O: + O

21 N. - O -+O; - N.

31 O - N(:D).-,.N" + O

410" H--,.H -- O

5) H" -- 0+0" + H

6) N. + -'- e-_.+aN("D'l -,- N

7) O('DI + O2--,Ol'P) + 02

8) OI_D) .-.,.Ol+P) * hv

,% N3<A_'X_) o_ O--products
+O(_S) _ N.

IO) NI:D) + NO-,N, - O

It) O(_D) + O-*O + O

12) O('S)--,.O{'D) + hu

O('P} _- hv

2 I x lO '+ .I -.- 'J,T__._T,_

/ 3+300 /

9 t x I0 '_ exp (-0 O02.T¢.I

5 x 10 ll

2.2 x 10 '_ T,5

2.5 x 10"' T,'5

a = 2.7 x I0 "7

13 = 19

2.9 x I0 I1e67 ST"

\,. = (100934

2 x I0 +'

13= o37

7 x 10"'

8 x 10 _2

1.07

0.044,1

Chen et al. [I 9781

Lindinger et al. [ 1974]

Ton" et al. [1970]

Banks and Kockarts 11973]

Banks and Kockarts [19731

Abdou et al. [19841

Queffelec et al. [1985]

Streit et al. [1976]

Fischer and Saha 11983]

Piper et al. [ 1981 l

Piper [ 19821

Lin and Kaufman [19711

Abreu et al. [1986]

Kemahan and Pang [1975]

Fig. 2. Three-dimensional plot of the 7320 A _olume emission rate at the peak of the layer versus latitude and local time. for 00

UT. The calculations were done lot conditions appropriate for November 28. 1983. The upper panel shows the same results.

hut without the altitude coordinate, i.e.. peak volume emission rate versus latitude and local time. The color code is on a log

,,cate. and the units are photons.era-'.s
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Fig. 3. Sources la) and sinks (b) of O*(:P) for the location

corresponding to 48°S at 11:16 LT in Figure 2. Sources are photo-

ionization and photoelectron impact ionization. Sinks are radiation

and quenching by O. N:, and electrons.

At tv,ilight the situauon changes rapidly. The photoionization

peak rises rapidly in altitude and the production rate falls sharply.

Figure 4 _hows the production rates for 48°S at 22:23 LT. At this

time the ,,olar zenith angle is I07 °, so that the high altitudes are

illuminated. There _s a ,,econd peak at abou; 300 km due to trans-

porled lo,.'al photoelectrons which are produced during the ionization

process which created the upper peak. Radiative loss dominates most

of the prolile. ,kt Io_ latitudes at midnight, the peak production rate

rends to zero at very high altitudes. When the production rate effec-

tively drops to zero lhese values are omitted in Figure 2, so as not 1o
obscure the main results.

9OO P.

800

h_,_-O

3OO
E %0

2O0

tO(: , ,, ,,,,a , ,, ,1,,,i , ,, ,,,,,1 , ...... ,1 , , ..... ,1 , ,, ,,

10 .7 10 _1 10 "i 10 .4 10 -3 10-3 10 "1

PROOLICTION RATE O* (=P) (cm 3 lec "_)

Fig. 4. Sources (a) and sinks (b) of O_f2P) for the location

corresponding to 48°S at 22:23 LT in Figure 2.

70o

_¢,oo

e,,,,

2 50o

Fig. 5. Vertical column integrated

surface brightness Im Rayleighs) for

the same case shown in Figure 2.
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In the winter Inonhern) hemisphere the twilights draw closer
together but the photochemistry, of the daytime and twilight 7320

emission is essentially the same as that described above. What is
interesting to note here is that there is some pro, z _ction of O" (2p) at

high latitudes even at midnight. The source is i:_pact ionization by
photoelectrons from the sunlit conjugate hemisphere. The conjugate

photoelectron source produces a column integrated surface bright-
ness of 2 to 3 R of 7320 ,_ emission.

Figure 5 shows the global map of the 7320 _ intensity for the same

case as Figure 2. This is what would be seen by an instrument look-
ing straight down at the Earth for a fixed UT. The midday intensities

in the winter hemisphere are slightly larger than those in the summer
hemisphere. This is because the winter hemisphere is somewhat
colder, and radiative loss dominates to a lower altitude.

Summa_

We have reported the first results of a midlatitude interhemispher-
; ';" coupled model of the 7320 ,_ airglow. These results show the

,, .real and seasonal variation for conditions representative of near
solar minimum. The magnitude and extent of the conjugate photo-

electron source is quantified, together with the sources and sinks at
selected times. In another paper [Ton. et al., 1989] we show further

details of the longitudinal and solar cycle variations. This model
allows three-dimensional maps of any airglow emission to be gener-

ated. Any line of sight geometry, can be projected through these maps
and the volume emission rate integrated along the viewing direction

t, 1able comparisons with observation. A three-dimensional
perspective of airglow emission rates or brighmesses is of relevance
to the interpretation of measurements taken from an orbiting vehicle.

A satellite flying in a circular orbit through the topology repre-
sented in Figure 2 would observe large variations in emission

through the structured regions. Semi-global maps of the type pro-
duced here provide rapid insight into the sources of the variability.
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OBJECTIVES

TO DEVELOP NARROWBAND HIGH "TRANSMITTANCE" FILTERS FOR

THE VACUUM ULTRAVIOLET (VUV) WAVELENGTH REGIME.

GOALS:

TRANSMII-i'ANCE > 30% FOR 130 < X < 200 nm

BANDPASS ,,, 3 nm FWHM

OUT-OF-BAND BLOCKING < 10-3%

APPLICATIONS:

SPECTRAL ISOLATION OF THE TERRESTRIAL

EMISSION FEATURES:

HLy_ 121.6 nm

OI 130.4 nm

OI 135.6 nm

AND OTHER FEATURES



CONCEPT FOR THE DEVELOPMENT OF HIGH

PERFORMANCE FILTERS

PROBLEMS: LACK OF LOW ABSORPTION FILM MATERIALS IN THE

VUV FOR ALL-DIELECTRIC TRANSMISSION FILTERS

=_ POOR TRANSMISSION, BANDWIDTH AND BLOCKING

ALTERNATIVES: REFLECTIVE COATINGS ARE NOT AS SEVERELY

AFFECTED BY ABSORPTION EFFECTS

BUT TYPICAL REFLECTIVE COATINGS HAVE A

RELATIVELY BROAD PASSBAND

A MEASURE OF SUCCESS HAS BEEN ACHIEVED

PREVIOUSLY BY COMBINING SEVERAL REFLECTORS

IN TANDEM

£J&ELOJ£J THE RATIO OF IN-BAND TO OUT-OF-BAND

REFLECTIVITY (R) INCREASES AS

(RIN/RouT)N WHEREN = NUMBER OF REFLECTORS

=_ IMPROVED BANDWIDTH AND OUT-OF-BAND BLOCKING
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Our Objective and Commercially
Available VUV Narrowband Filters
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Multiple Reflectors as

Narrowband and Broadband VUV Filters

Muamer Zukic and Douglas G. Torr

University of Alabama in Huntsville

Department of Physics

Research Institute C-10

Huntsville, Alabama 35899

Abstract

We report the development of a new coating design for applications in the vacuum

ultraviolet which yields significantly higher reflectivity over selectable bandwidths. We

demonstrate that the concept can be used to fabricate high performance narrow and

broadband reflection filters, whose spectral properties can be greatly enhanced by utilizing

several of these filters in tandem. For example, we have fabricated a narrowband filter

at the location of the OI 135.6 nm line with 3.2 nm bandwidth, peak transmittance of

39.3%, and blocking of out-of-band wavelengths is better than 10-4%. The principle of

our design approach is to use a combination of high (H)- low (L) refractive index dielectric

pairs such that H + L = ,L/2 where H/L < 1. H and L designate the optical thicknesses

of high and low index film materials. This kind of choice for the high-low ratio reduces

the effects of absorption for the H films for which the extinction coefficient in the VUV

is much higher than for the low index film material MgF=. The reduced absorption of

multilayers with H/L < 1, results in a significant increase of reflectivity compared to the

classical quarterwave stack for which H/L = 1.

Submitted to Applied Optics, 1990



I. INTRODUCTION

Narrowband filters that are commercially available in the vacuum ultraviolet wave-

length region from 120 nm to 160 nm have typical transmittance lower than 15%, and full

width measured at half of transmittance maximum (FWHM) greater than 25 nm. The

peak transmittance of the filters centered at the longer wavelengths from 160 nm- 230

nm lie between 20% and 25% with FWHM > 20 nm. t

MalherbO reported the design and the spectral performance of a narrowband filter

centered at the hydrogen Lyman-a line (121.6 nm) with peak transmittance close to

15% and FWHM = 9 nm. Blocking of the wavelengths longer than 160 nm is better than

10-s%. The filter has relatively high transmittance for the wavelength region from 126 nm

- 135 nm; close to 7% at 126 nm and almost 1% at 135 nm. This pass window makes the

filter not very useful for terestrial imaging applications if the spectral discrimination of the

neighboring atomic oxygen lines at 130.4 nm and 135.6 nm is desired. A narrowband filter

centered at 202.5 nm is reported by the same author 3. The filter has peak transmittance

greater than 85% and FWHM = 2.5 nm. However, the blocking zone of the filter is very

short and transmittance for wavelengths longer than 220 nm becomes greater than 85%.

The calculated and experimental spectral performance of a Fabry-Perot-type nar-

rowband filter centered at 179 nm was reported by Spiller 4. The theoretical calculation

predicted a narrowband filter with resolution ,x0/_X,x = 60 and peak transmittance of 25%,

but the measured performance had almost four times smaller resolution and much smaller

peak transmittance. Discrepancies between the theoretically predicted and experimentally

obtained spectral curves have been ascribed to the excitation of a surface plasma wave

traveling along the surface of an aluminum film.

1



A variable bandwidth transmission filter reported by Elias _et al had bandwidths

from 7 nm to 20 nm with peak transmittance from 20% to 40%, respectively. The filter

was centered at 17fi rim, and as in the case of other all-dielectric filters, suffered from pass

windows in the longer wavelength region.

Narrowband filters for the vacuum ultraviolet wavelength range (VUV) from 120 nm

to 230 nm with similar optical properties to those listed above were also reported by

some other authors e-9. The FWHM bandwidths of some filters that we have developed

recently 1° are smaller than 5 nm with peak transmittance greater than 25% centered at

wavelengths as low as 135 nm. Since those were all-dielectric filters, the transmittance in

the longer wavelength region provided insumcient blocking for some applications.

Currently available VUV broadband filters with bandwidths greater than 10 nm have

relatively low transmittance and the shape of the transmittance curve is similar to that

of Fabry-Perot-type filters t,4-s,l*. For most applications a more rectangular shape for the

pass band and higher transmittance is required.

Taking all this into account, it is clear that the VUV spectral range lacks high quality

narrow and broadband filters such as are available in the visible and infrared parts of the

spectrum. The reasons for this are certainly a lack of low absorbing film materials in the

VUV for all-dielectric filters, and the coupling of the incident light into plasma surface

waves of the metal for metal-dielectric filters.

Hunted 2 achieved a measure of success in solving this problem by combining two or

more reflectors in series in order to achieve desired spectral performance for the design

of vacuum ultraviolet reflection polarizers and analyzers. The idea is that if sufficiently

high reflectivity can be achieved within the passband, then the in-band exponential loss of

2



reflectivity with additional reflective surfaces becomes insignificant compared to the net

out-of-band exponential reflectance reduction. However, for the approach to be viable,

the ratio of in-band to out-of-band reflectivity at each surface should be the order of 10,

eg. 90% and 10%, respectively. Two reflections, for example, then reduce the in-band

reflectivity to 81%, whereas the out-of-band reflectivity is reduced to 1%, and so on.

In this paper we report the successful design and fabrication of narrow and broad-

band reflection filters with the desired 90% reflectance. These filters are then combined

into a multiple reflector to provide excellent blocking for out-of-band wavelengths and the

desired spectral shape for both narrowband and the broadband applications. For exam-

ple, narrowband filtering with a bandwidth of 3.2 nm and a throughput at the central

wavelength (135.6 nm) of 39.3% was achieved. Blocking of out-of-band wavelengths is

better than 10-4%. A multiple reflector was designed to illustrate the performance of a

broadband filter centered at 175 nm. In this case a bandwidth of 11 nm and throughput

greater than 54% was realized. Out-of-band blocking is better than 3x10-s%.

The next section of this paper reviews the theory of quarterwave (QW), and other

multilayer options which we have called rl filters 13. The design and spectral performance

of several narrowband and broadband filters are presented in Section III. Section IV deals

with experimental techniques including thin film deposition, and substrate handling and

preparation. A summary is given in Section V.



II. ABSORBING MULTILAYERS

A. Reflectance Transmittance and Absorptance

The intensity reflection and transmission coefficients for a plane electromagnetic wave

incident on a multilayer stack are given by 14

(Mli + Ml:Ts)_o - (M_I + M227s) (1)
r = (MtI + M127s)7o + (M31 + M_27s)'

2_
t = (MH + M_27s)7o + (M2_ + M:27s)' (2)

where ,10 and 7s, which are the effective optical functions of the incident medium and the

substrate, are defined as

7o ----no ¢os8o, (3)

7s = as ¢osOs (4)

for s polarization, and as

cos_o
7o-- , (5)

no

cos_s
7s -- , (0)

ns

for p polarization. Angles, e0 and e,, for light propagation through the incident medium

and the substrate are measured relative to the normal to the film plane, n0 and ns are the

refractive indices of the incident medium and the substrate, respectively. It is assumed

that both the substrate and incident medium have negligible extinction coefficients and

therefore real optical functions. The terms Mu, i, j = 1, 2 are the elements of the multilayer

characteristic matrix M which is defined as the product of the matrices of the individual

layers Mr, where

(cos6, _sin6,)MI = i7t sin 6z cos 6t " (7)



The phase thicknesses of the films 6 are given by

271"

6 = -_--Ntdl cos O. (8)
,4O

where _0 is the vacuum wavelength of the incident light. Nt is the optical function (usually

referred to as "optical constant") of the l-th layer defined as

Nt = nt(1 + iKt) = nz + inter = nl + ikh (9)

with ,q = kdm. and where nt is the refractive index, kz is the extinction coefficient, dt is

the physical thickness, and Oa is the complex angle of the light within the l-th film.

The reflection and transmission coefficients r and t are complex numbers of the form

, = I,.1_'_, (lO)

t = Itl_'_', (11)

where ¢, and et are the phase changes on reflection and transmission. The intensity

reflectance R, transmittance T, and absorptance A of a multilayer are given by

R = rr', (12)

T = rl-s-tt', (13)
7/0

A= 1-(R+T). (14)

B. Quarterwave Tuned Multilayers

Multilayer stacks formed by high and low index materials alternating throughout a

stack are usually referred to as tuned filters or tuned multilayers. The basic design of



sucha multilayer stack is givenin either symmetric [(HL),H] or asymmetric form [(HL)p].

Symmetric [(LH)pL] and asymmetric [(LH)p] tuned multilayers represent another form

of the basic design, tt and L designate optical thicknesses of high and low refractive

index film materials respectively, and p is the number of (HI,) pairs. The form and the

symmetry of a stack are determined by the refractive indices of the substrate and incident

medium 1'.

If the optical thickness of a film (defined as a product of a physical thickness of a film

and its refractive index) is equal to one quarter of some reference wavelength ,x, then this

film is referred to as a quarterwave (QW) . Applications of QW multilayers are based

on the fact that for an incident wavelength A0 = A, the beams reflected from the various

interfaces will all be in phase, so the reflectance obtained is a maximum.

We have shown that at zero angle of incidence, the maximum reflectance of a QW

stack with absorbing film materials is achieved when the number of (HL) pairs p satisfies

the following condition 1°

where

and

( ( ))'R _H -- t_L

p = po = "_ tan-' i7 In"_L ' (15)

kH

_H= --, (16)
nH

kL

XL -- • (17)
71L

nH and nL are refractive indices of high and low index film materials, and ku and kL are

corresponding extinction coefficients. Values of v > p0 correspond to numbers of (HL)

pairs for which both the absorptance and reflectance of the stack are constant and sum



to unity i.e.

R+A---* 1, (18)

resulting in a value for the stack transmittance essentially equal to zero.

An alternative description of the optical properties of a QW stack with absorbing

films might be given in terms of the standing wave ratio (SWR) 18. The SWR in general

is the ratio of the maximum and minimum amplitudes in a standing wave. In multilayer

theory it is the ratio of the maximum to minimum electric field amplitude in the standing

wave formed by the interference of the incident and reflected electromagnetic waves. For

a symmetrical QW stack lr

1+v_
SWR = -- (19)

1-v_

where R is the intensity reflectance of the stack. The SWR saturated level and therefore

the maximum reflectance of a QW stack of the form [(HL)pH] is given by ts

_ k_H_+ kL (20)
21RK -- 1 2_rn0 n_l.f nL

where RE, the ultimate reflectance, is usually referred to as the Koppelmann limit. Thus,

the reflectance of a QW stack R -, RK as p -_ oo, if film materials forming the stack are

absorbing. For non-absorbing film materials R --, 1 as p--, oo.

It should be emphasized that Eq.(20) was derived with some approximations is and it

cannot replace an exact calculation of the maximum reflectance of a QW stack. Equation

(20) provides an extremely simple relationship between the maximum reflectance obtain-

able with an absorbing QW stack and the optical properties of film materials forming

the stack. However, the value obtained for the maximum reflectance must be treated

as an estimate. In addition, RK is derived for zero angle of incidence and it does not

represent the ultimate reflectance for 00 _ 0°. Therefore, we shall reference the exactly

7



calculated reflectance[Eq. (12)] as the "Koppelmann limit" for a QW stack at any angle

of incidence.

The Koppelmann limit and how to extend it have been the subject of a number of

theoretical and experimental studies t°-2t. Some approaches involve numerical refinement

of the film thicknesses in order to reduce the electric field amplitude in the high index

materials close to the side of incidence. Other authors, assuming values of the extinction

coefficient lower than 10 -8, derived approximating formulas for the thicknesses of an

optimum (HL) pair which would provide the maximum reflectance.

BaF_ and LaFs are the only available VUV high index film materials identified at

this time 22. They both have values of the extinction coefficient greater than 10 -2 for

wavelengths below 200 nm. This means that most of above mentioned and referenced

techniques for the improvement of the Koppelmann limit are not applicable to the VUV

wavelength range. Our approach to this problem is to utilize multilayer stacks with the

optical thickness ratio H/L < 1 instead of standard QW stacks for which H/L = 1. MgFu

film material has values of the extinction coefficient of the order of 10 -4 for almost entire

VUV wavelength region 22, and it is exclusively used as the low index film material for

all multilayer designs presented in this paper. Since the extinction coefficient of the high

index materials (BaF_ and LaFs) is 100 times greater than that of MgF3, the stacks with

H/L < 1 have lower absorption and therefore higher reflection than stacks with H/L = 1.

C. Thirdwave Tuned Multilayers

The definition of the thirdwave (TW) multilayers is not standardized as in the case

of the quarterwave stacks. It is defined here as a tuned multilayer which has one material

with optical thickness equal to one third of some reference wavelength, while the optical



thickness of the other material is equal to one sixth of a reference wavelength, i.e.

nLdL = --.
3

Since kH/k L )___100 for presently available high and low index materials in the VUV (LaF3,

BaF:, and MgF2), the choice of which material should have the optical thickness of ;_r/6

is obvious.

The two H and L films in a QW multilayer form an (HL) pair with total optical

thickness equal to ,L/2 which corresponds to a total phase thickness of the pair 6 = 7r.

Similarly, an (HL) pair of a TW multilayer has an overall optical thickness equal to At/2

which again corresponds to a total phase thickness of the pair equal to r. Thus, the

principle of a high reflectance at a reference wavelength of a TW tuned multilayer is

similar to that of a QW stack. The concept of the TW multilayer leads to other kinds of

multilayers which are discussed in the next section.

D. II Multilayers

We define a N multilayer as one whose basic (HL) pair has a total optical thickness of

,_,/2. Optical thicknesses of individual H and L films forming a pair satisfy the following

condition

H + L = 5-' (2a)

where >,, is the reference wavelength of the multilayer. The total phase thickness of the

pair is equal to r, i.e. 6H + 6L = r. Thus, quarterwave and thirdwave stacks are the

special cases of 17 multilayers. In a quarterwave stack light reflected from all interfaces is

in phase, while in a thirdwave and other 17 multilayers light reflected from each (HL) pair

9



is in phase. Obviously, quarterwave stacks with low-absorbing film materials (available

in the visible and infrared parts of spectrum) provide higher reflectance with fewer layers

than other rl stacks. However, in the VUV where low-absorbing high index film materials

do not exist, a 11 multilayer with smaller physical thickness of H relative to L can provide

lower absorptance and therefore higher reflectance of the stack.

Figure 1 illustrates how the Koppelmann limit can be easily extended for zero angle

of incidence. It shows maximum reflectances calculated for the 99-, 55-, and 35-layer rl

stacks plotted against the ratio of optical thicknesses of high and low index film materials

(I-I/L). The reference wavelength is 145 nm, with MgF2 as the high, LaF3 as the low index

materials, and fused silica as the substrate. The Koppelmann limit is RK = 90.8%. The

99-layer filter has the maximum reflectance of 96.5% when the ratio of optical thicknesses

H/L = 1/4. This ratio corresponds to the optical thicknesses of H = ),,/10 and L = 4a,/10.

The 55-layer has the maximum reflectance of 95.3% for H/L = 1/3 which corresponds to

the optical thicknesses of H = ;_,/8 and L = 3,_,/8. The ratio H/L = 1/2 provides the

maximum reflectance of 93.6% for the 35-layer II stack. From Fig. 1, it follows that at

zero angle of incidence, stacks with the ratio H/L < 1 provide a significant improvement

in the maximum reflectance over what can be achieved with QW stacks for which H/L =

1.

Shown in Figures 2 and 3 are maximum reflectances and bandwidths (full width

measured at half of reflectance nlaxinlum) respectively, calculated at 00 = 450 for the 99-,

55-, and 35-layer 17 stacks, plotted against the ratio of optical thicknesses of high and

low index material (H/L). The reference wavelength is 135.6 nm, with MgF2 as the low,

LaF3 as the high index material, and fused silica as the substrate. The Koppelmann limit

for the QW stack is R_- = 89.5% 0o = 450 at angle of incidence. The 99-and 55-layer 17

10



multilayers (Fig. 2) have a maximum reflectance of 93.0% and 92.7% respectively, when

the ratio of optical thicknesses is H/L = 1/3. This corresponds to optical thicknesses of

high and low index film materials

3,_
L _ m

8

The 35-layer _ stack (Fig. 1) has a maximum reflectance of 91.4% for H/L = 1/2. The

optical thicknesses for this H to L ratio of the 17 multilayer are given by

3

The lowest decrease of the maximum reflectance occurs for the QW stack when the

number of films is decreased from 99 to 35. This result is certainly expected since the

saturation level of the SWR decreases with an increase of the multilayer absorption. Of all

the multilayers the physical thickness of the high index material (LaF8 in this particular

case) within the multilayer is largest for the QW stack. Therefore, the SWR saturation

level for the QW stacks is achieved with fewer layers compared to other 17 stacks. As

should be expected the bandwidth decreases with a decrease of of the ratio H/L. It is 17

nm for the QW stack and 6.9 nm for the stack with H/L = 1/5 (Fig. 3).

From Figs. 2 and 3, it follows that for the design of a narrowband reflector centered at

135.6 nm, the 17 stack with H/L = 1/4 seems to be the most feasible choice. The 35-layer

stack with this ratio has optical thicknesses given by

A
nHdH =m

10

4A
nLd L = --.

10
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Calculated valuesof the maximum reflectance R_,_ = 88.4% at 135.6 nm and FWHM

= 7.2 nm. Figure 4 shows the measured and calculated reflectance of this stack with

fused silica as the substrate material. The measured values of the peak reflectance at

135.6 nm is 88.3% while the theory predicts the reflectance peak of 88.4%. The measured

bandwidth of 7.2 nm agrees with the theoretical predictions.

Figure 5 shows the measured and calculated reflectance at 45 ° angle of incidence for

a 29-layer 17 stack with BaF_ as the high index material and fused silica as the substrate.

The ratio H/L = 1/3, and optical thicknesses are given by

nH d/_ = --
8

rtLd L -
8

The measured reflectance maximum at )_, = 135.6 nm is 86.0% with bandwidth of 7.2

nm. The theory predicts 86.9% maximum reflectance and 6.8 nm bandwidth.

E. Higher Order II Multilayer Stacks

The first order QW stacks have wider high reflectance zone than other rl multilayers.

The width of the high reflection zone (A,_)H.R. of a QW multilayer with non-absorbing

film inaterials is given by 2a

1 4,_,_sin_ 1 (n__H--nL) (24)(A)_)H'R" = 2(m-- 1)+ 1 r +nL

where m is the order of H multilayer. For absorbing film materials the width of the high

reflection zone is smaller than that calculated using Equation (24). Thus, Equation (24)

gives a maximum width for a high reflectance zone obtainable for materials with refractive

indices nH and nL. Thus, an alternative approach for the design of the narrowband

12



reflectors is to utilize the QW or other II stacks with higher order m. However, an increase

of the order of a II stack from 1 to, say m, changes a total phase thickness of an (HL) pair

from ,r -. ma'. The total optical thickness of an (HL) pair is increased by A,/2 when the

order of a II stack is increased by unity. Increased physical thickness of both high and

low index fihn materials results in increased absorptance and therefore lower reflectance

of the stack. Figure 6 shows the calculated and experimentally obtained reflectance of

the second order QW stack centered at 135.6 nm at a 450 angle of incidence. BaF3 is

used as the high index material and fused silica as the substrate. The calculated value

of the maximum reflectance is 83.1% while the measured value is 69.9%. Discrepancies

between the theory and experiment ,nay be explained by the presence of physical factors

neglected in the theoretical calculation such as the surface and volume scattering, film and

substrate contaminations, and film inhomogeneity. The agreement between the theoretical

prediction and experimentally obtained results is much better for the first order filters

(Figs. 4 and 5) than for the second order QW stack. This may indicate that thicker films

in the QW stack are more affected by the physical factors neglected in the multilayer

theoretical calculation.
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III. MULTIPLE REFLECTION FILTERS

A. Narrowband

Reflection filters shown in Figures 4 and 5 have measured reflectances at the central

wavelength of 86.0% and 88.3%, respectively. They both have relatively high reflectance in

the shorter wavelength region and an average reflectance of the order of 10% for the longer

wavelengths. The reflectance outside the filter's "pass" zone and the bandwidth of the pass

zone can be reduced by means of multiple reflections from two or more reflection filters

upon which light is incident at an angle of 450 . The overall transmissions of combinations

of four and six 29-layer filters are shown in Figures 7 and 8, respectively.

The maximum throughput of the 4-filter combination at the central wavelength ,_ =

135.6 nm is 53.7% and the bandwidth of 4.3 nm. The blocking for shorter wavelengths is

better than 0.7% and for longer wavelengths is better than 10-2%. If further improvement

of the blocking for wavelengths outside the pass zone is required, then 6 or more filters

can be combined. However, adding more filters will reduce the overall transmittance of

the combination. The maximum throughput of the 6-filter combination at the central

wavelength is 39.3% with the bandwidth of 3.2 nm. The blocking outside the pass zone is

better than 10-_% for longer and better than 0.07% for shorter wavelengths. If a 4 mm

thick MgF2 window is placed at the entrance of the combination than the transmittance

of shorter wavelengths may be less than 10-4%.

B. Broadband

The pass zone of a broadband filter is bounded by a lower and upper wavelengths.

Ideally, the spectral components of the incident light, with wavelengths shorter than the
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lower and longer than the upper wavelength of the filter, together referred to as the out-

of-band spectrum, are rejected. In the design examples that follow, wavelengths of the

out-of-band spectrum are rejected by means of multiple reflections from QW stacks. The

rejection at shorter wavelengths might be improved by the suitable choice of the window

material, placed at the entrance of a multireflector combination. Windows made of BaF_

and CaF2 absorb wavelengths below 135 nm, and 125 nm respectively, while fused silica

and A1208 may be used for broadband filters with a lower pass limit above 145 nm 13,2_.

Because of the narrower high reflection zone the H multilayers with H/L < 1 are not

suitable for the design of broadband reflectors. QW stacks for which H/L = 1 are a

better choice for the design and fabrication of these filters. Figure 9 shows the measured

and calculated reflectance at 45 o incident angle for the 25-layer QW stack. The reference

wavelength is 175 nm, LaFa is used as the high index material, and fused silica as the sub-

strate. The measured peak value of the reflectance is 90.3% and the bandwidth measured

at half of the reflectance maximum is 19 nm. The average reflectance for the out-of-band

wavelengths is of the order of 10%. The Koppehnann limit for LaFs and MgF2 at this

wavelength is RK = 94.4% , and the theoretically predicted value of the peak reflectance

is 91.6%.

The agreement between the theory and the experiment is much better than for the

second order QW stack (Fig. 6). Again this may indicate that thicker films in the second

order QW stack are more affected by the physical factors neglected in the multilayer

theoretical calculation.

Figure 10 shows the transmittance of combinations of four and six of these reflectors.

The 4-reflector combination has a peak transmittance of 66.3% and the bandwidth of

11.5 nm. The rejection of the out-of-band spectrum up to 300 nm is better than 0.1%.
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If a 4 mm thick fused silica parallel plate is used as the window then the rejection of the

shorter wavelengths of the out-of-band spectrum is better than 10-s%. The 6-reflector

combination has a peak transmittance of 54.04% with bandwidth of 11 rim. This com-

bination provides much better rejection for out-of-band wavelengths. The transmittance

of the combination for out-of-band wavelengths is less than 3 x 10-8%. If a 4 mm thick

fused silica is used as the window than the transmittance of the combination for shorter

wavelengths of the out-of-band spectrum is less than 10-5%.
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IV. THE EXPERIMENTAL ARRANGEMENT

All depositions are made on 12.7 mm diameter by 2 mm thick MgF2 and fused silica

substrates with root mean square roughness less than 1 nm. The substrates are cleaned by

the supplier (Acton Research Corp., Acton, Massachusetts) using the following procedure:

optical soap wash, water rinse, ethanol soak then ultrasonic bath, fresh ethanol rinse, and

finally a Freon rinse. The substrates are packed in a clean room environment in Delrin

holders. They are removed from Delrin holders immediately prior to mounting in the

substrate holder for deposition. Mounting in the substrate holder is done in a laminar

flow bench. During the transport from the bench to the vacuum chamber the substrate

is kept in a flow of dry nitrogen. All depositions are made at the University of Alabama

in Huntsville, Optical Aeronomy Laboratory and spectrophotometric measurements are

made at the Atomic Physics Branch of the NASA/Marshall Space Flight Center.

The vacuum system consists of a cryo-pump and a sorption pump giving an oil-

free environment for all depositions and therefore providing a very low probability for

hydrocarbon contamination of the films. The fihn materials BaF2 and LaF3 are prepared

for vacuum deposition by CERAC with a typical purity of 99.9% while MgF3 (99.95%) is

standard BALZERS coating material. The films are deposited with low deposition rates

of 0.18 - 0.20 nm/sec on the substrates heated to 200°C. The pre-deposition pressure is

7.5x10 -_ while the deposition pressure varies between 1.7 and 2.3x10 -s for all coating

materials. The temperature is monitored with a Chromel-Alumel thermocouple attached

to an aluminum ring substrate holder. The substrate and the ring holder are placed in

the center of a 40 mm diameter by 6 mm thick stainless steel plate. A quartz crystal

is used for the fihn thickness and deposition rate monitoring. The depositions are made

with an electron gun. The gun has fixed voltage of 10 KV and low power depositions are
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maintained by supplying low current to the filament. The source to the substrate distance

is 500 mm and the source to the monitor distance is 350 mm.
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V. SUMMARY

The idea of utilizing multiple reflections from II multilayer reflection filters upon which

the light is incident at 450 angle constitutes the basis of our narrowband and broadband

filters. The multiple reflector combinations provide superior spectral performance for both

the narrowband and the broadband filters over what is currently available.

The high reflective multilayer coatings for the narrowband reflection filters are de-

signed using 1I multilayer stacks with I-I/L < 1 instead of the classical QW stacks for

which H/L = 1. It is shown that the lI stacks with H/L < 1 have higher reflectance and

smaller bandwidth than the QW stacks, and are therefore more suitable for the design of

narrowband reflection filters. It is demonstrated that the QW stack maximum reflection

limit at both 00 = 0 ° (Koppehnann limit ) and 0o = 450 can be easily extended for coating

materials available in the VUV. A peak reflectance of more than 96% for zero angle of

incidence can be achieved for wavelengths as low as 135.6 nm when rI stacks with the

ratio H/L < 1 are utilized. Stacks with more than 99 layers can provide further improve-

ments of the maximum reflectance, but the lowest value of the H/L ratio is limited by the

smallest feasible thickness of the high index films. Furthermore, II multilayers with H/L

< 1 are not suitable for broadband reflectors since they generally do not have a width of

the high reflectance zone as wide as the QW stacks.

The agreement between the theoretical and experimental results is much better for

first order filters (Figs. 4, and 5) than for the second order QW stack (Fig. 6) and for

QW stacks centered at longer wavelengths (Fig. 9). This may indicate that thicker fihns

in the QW stack are more affected by the physical factors neglected in the multilayer

theoretical calculation such as the surface and volume scattering, film inhomogeneity, and

film contamination.
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FIGURE CAPTIONS

Figure 1: The maximum reflectance of the II stack calculated for zero angle of incidence

at 145 am. Diamonds represent 99-layer, triangles 55-layer, and squares 35-1ayer stacks.

H = Lanthanum Fluoride, and L = Magnesium Fluoride. The Koppelmann limit is 90.8%.

Figure 2: The maximum reflectance of the 1I stack calculated for 45 degrees angle of

incidence at 135.6 nm. Diamonds represent 99-layer, triangles 55-layer, and squares 35-

layer stacks. H = Lanthanum Fluoride, and L = Magnesium Fluoride. The Koppelmann

limit is 89.5%.

Figure 3: The full width at half of the reflectance maximum of the II stacks calculated

for 45 degrees angle of incidence. The maximum reflectance of the stacks as a function of

the H/L ratio is shown in Fig. 2.

Figure 4: The measured (squares) and calculated (diamonds) reflectance of the 35-layer

rI stack for 45 degrees angle of incidence centered at 135.6 nm. The optical thickness ratio

H/L = 1/4 with H = Lanthanum Fluoride, and L = Magnesium Fluoride.

Figure 5: The measured (squares) and calculated (diamonds) reflectance of the 29-layer

II stack for 45 degrees angle of incidence centered at 135.6 nm. The optical thickness ratio

H/L = 1/3 with H = Barium Fluoride, and L = Magnesium Fluoride.

Figure 6: The measured (squares) and calculated (diamonds) reflectance of the 35-

layer second order QW stack for 45 degrees angle of incidence centered at 135.6 nm. H

= Barium Fluoride, and L = Magnesium Fluoride.



FIGURE CAPTIONS

(Continued)

Figure 7: The transmittance of the combination of four 29-layer filters shown in Figure

5. The bandwidth is 4.3 nm, and a peak transmittance at 135.6 nm is 53.7%.

Figure 8: The transmittance of the combination of six 29-layer filters shown in Figure

5. The bandwidth is 3.2 nm, and a peak transmittance at 135.6 nm is 39.3%.

Figure 9: The measured (squares)and calculated (diamonds) reflectanceof the 25-1ayer

QW stack for 45 degrees angle ofincidence centered at 175 nm. H = Lanthanum Fluoride,

and L = Magnesium Fluoride.

Figure 10: The transmittance of combinations of four (solid line) and six (dashed line)

25-layer QW stacks shown in Fig. 9.
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High Throughput Narrowband 83.4 nm Self-Filtering Camera

Muamer Zukic and Douglas G. Torr

University of Alabama in Huntsville

Research Institute C-10

Huntsville, AL 35899

Phone: (205) 895-6238 FAX: (205) 895-6717

and

Marsha R. Torr and James F. Spann

NASA/Marshall Space Flight Center

Huntsville, AL 35812

Phone: (205) 544-7591 FAX: (205) 544-5862

Abstract

Photometric imaging of ionospheric/magnetospheric O II emission at 83.4 nm is a

primary objective for imaging and tomographic mapping of magnetospheric O + ions.

However, instrumental sensitivity has been a major barrier to realizing this goal. We

report an instrumental design employing a low focal ratio (f/# less than 2) three-

mirror camera where the reflecting surfaces act as both narrow-band reflection filters

at 83.4 nm and as a high quality imaging system. The design includes multilayer

coatings with reflectances that are relatively insensitive to the angle of incident light (0

- 500). The peak reflectance per mirror is more than 60% at 83.4 nm with the average

reflectance for out-of-band wavelengths of less than 50/0. The net reflective transmission

for the three mirrors is greater than 20% with 5am bandwidth and 10-=% rejection for

out-of-band wavelengths increasing to 5x10-4% at H Ly a (121.6 nm). The low focal

ratio combined with high system transmission results in about 2 orders of magnitude

improvement in sensitivity over previously reported designs. The camera spot size

throughout the entire image plane is less than 50 ttm for an 80 field of view, improving

with smaller fields of view.
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